Aromātai
\frac{1934}{11}\approx 175.818181818
Tauwehe
\frac{2 \cdot 967}{11} = 175\frac{9}{11} = 175.8181818181818
Tohaina
Kua tāruatia ki te papatopenga
175+\frac{3\times 3}{11}
Tuhia te \frac{3}{11}\times 3 hei hautanga kotahi.
175+\frac{9}{11}
Whakareatia te 3 ki te 3, ka 9.
\frac{1925}{11}+\frac{9}{11}
Me tahuri te 175 ki te hautau \frac{1925}{11}.
\frac{1925+9}{11}
Tā te mea he rite te tauraro o \frac{1925}{11} me \frac{9}{11}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1934}{11}
Tāpirihia te 1925 ki te 9, ka 1934.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}