Whakaoti mō x
x=-\frac{87}{50000}=-0.00174
Graph
Tohaina
Kua tāruatia ki te papatopenga
174\times 10^{-5}x=-x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
174\times \frac{1}{100000}x=-x^{2}
Tātaihia te 10 mā te pū o -5, kia riro ko \frac{1}{100000}.
\frac{87}{50000}x=-x^{2}
Whakareatia te 174 ki te \frac{1}{100000}, ka \frac{87}{50000}.
\frac{87}{50000}x+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
x\left(\frac{87}{50000}+x\right)=0
Tauwehea te x.
x=0 x=-\frac{87}{50000}
Hei kimi otinga whārite, me whakaoti te x=0 me te \frac{87}{50000}+x=0.
x=-\frac{87}{50000}
Tē taea kia ōrite te tāupe x ki 0.
174\times 10^{-5}x=-x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
174\times \frac{1}{100000}x=-x^{2}
Tātaihia te 10 mā te pū o -5, kia riro ko \frac{1}{100000}.
\frac{87}{50000}x=-x^{2}
Whakareatia te 174 ki te \frac{1}{100000}, ka \frac{87}{50000}.
\frac{87}{50000}x+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
x^{2}+\frac{87}{50000}x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\frac{87}{50000}±\sqrt{\left(\frac{87}{50000}\right)^{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, \frac{87}{50000} mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{87}{50000}±\frac{87}{50000}}{2}
Tuhia te pūtakerua o te \left(\frac{87}{50000}\right)^{2}.
x=\frac{0}{2}
Nā, me whakaoti te whārite x=\frac{-\frac{87}{50000}±\frac{87}{50000}}{2} ina he tāpiri te ±. Tāpiri -\frac{87}{50000} ki te \frac{87}{50000} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0
Whakawehe 0 ki te 2.
x=-\frac{\frac{87}{25000}}{2}
Nā, me whakaoti te whārite x=\frac{-\frac{87}{50000}±\frac{87}{50000}}{2} ina he tango te ±. Tango \frac{87}{50000} mai i -\frac{87}{50000} mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{87}{50000}
Whakawehe -\frac{87}{25000} ki te 2.
x=0 x=-\frac{87}{50000}
Kua oti te whārite te whakatau.
x=-\frac{87}{50000}
Tē taea kia ōrite te tāupe x ki 0.
174\times 10^{-5}x=-x^{2}
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
174\times \frac{1}{100000}x=-x^{2}
Tātaihia te 10 mā te pū o -5, kia riro ko \frac{1}{100000}.
\frac{87}{50000}x=-x^{2}
Whakareatia te 174 ki te \frac{1}{100000}, ka \frac{87}{50000}.
\frac{87}{50000}x+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
x^{2}+\frac{87}{50000}x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+\frac{87}{50000}x+\left(\frac{87}{100000}\right)^{2}=\left(\frac{87}{100000}\right)^{2}
Whakawehea te \frac{87}{50000}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{87}{100000}. Nā, tāpiria te pūrua o te \frac{87}{100000} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{87}{50000}x+\frac{7569}{10000000000}=\frac{7569}{10000000000}
Pūruatia \frac{87}{100000} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{87}{100000}\right)^{2}=\frac{7569}{10000000000}
Tauwehea x^{2}+\frac{87}{50000}x+\frac{7569}{10000000000}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{87}{100000}\right)^{2}}=\sqrt{\frac{7569}{10000000000}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{87}{100000}=\frac{87}{100000} x+\frac{87}{100000}=-\frac{87}{100000}
Whakarūnātia.
x=0 x=-\frac{87}{50000}
Me tango \frac{87}{100000} mai i ngā taha e rua o te whārite.
x=-\frac{87}{50000}
Tē taea kia ōrite te tāupe x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}