Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1728y\times \frac{7}{20}
Whakahekea te hautanga \frac{35}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1728\times 7}{20}y
Tuhia te 1728\times \frac{7}{20} hei hautanga kotahi.
\frac{12096}{20}y
Whakareatia te 1728 ki te 7, ka 12096.
\frac{3024}{5}y
Whakahekea te hautanga \frac{12096}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{\mathrm{d}}{\mathrm{d}y}(1728y\times \frac{7}{20})
Whakahekea te hautanga \frac{35}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1728\times 7}{20}y)
Tuhia te 1728\times \frac{7}{20} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{12096}{20}y)
Whakareatia te 1728 ki te 7, ka 12096.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3024}{5}y)
Whakahekea te hautanga \frac{12096}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{3024}{5}y^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{3024}{5}y^{0}
Tango 1 mai i 1.
\frac{3024}{5}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{3024}{5}
Mō tētahi kupu t, t\times 1=t me 1t=t.