1728y \times 35 \% =
Aromātai
\frac{3024y}{5}
Kimi Pārōnaki e ai ki y
\frac{3024}{5} = 604\frac{4}{5} = 604.8
Graph
Tohaina
Kua tāruatia ki te papatopenga
1728y\times \frac{7}{20}
Whakahekea te hautanga \frac{35}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{1728\times 7}{20}y
Tuhia te 1728\times \frac{7}{20} hei hautanga kotahi.
\frac{12096}{20}y
Whakareatia te 1728 ki te 7, ka 12096.
\frac{3024}{5}y
Whakahekea te hautanga \frac{12096}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{\mathrm{d}}{\mathrm{d}y}(1728y\times \frac{7}{20})
Whakahekea te hautanga \frac{35}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1728\times 7}{20}y)
Tuhia te 1728\times \frac{7}{20} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{12096}{20}y)
Whakareatia te 1728 ki te 7, ka 12096.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{3024}{5}y)
Whakahekea te hautanga \frac{12096}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{3024}{5}y^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{3024}{5}y^{0}
Tango 1 mai i 1.
\frac{3024}{5}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{3024}{5}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}