Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

17x^{2}-6x-15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 17\left(-15\right)}}{2\times 17}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 17 mō a, -6 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 17\left(-15\right)}}{2\times 17}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-68\left(-15\right)}}{2\times 17}
Whakareatia -4 ki te 17.
x=\frac{-\left(-6\right)±\sqrt{36+1020}}{2\times 17}
Whakareatia -68 ki te -15.
x=\frac{-\left(-6\right)±\sqrt{1056}}{2\times 17}
Tāpiri 36 ki te 1020.
x=\frac{-\left(-6\right)±4\sqrt{66}}{2\times 17}
Tuhia te pūtakerua o te 1056.
x=\frac{6±4\sqrt{66}}{2\times 17}
Ko te tauaro o -6 ko 6.
x=\frac{6±4\sqrt{66}}{34}
Whakareatia 2 ki te 17.
x=\frac{4\sqrt{66}+6}{34}
Nā, me whakaoti te whārite x=\frac{6±4\sqrt{66}}{34} ina he tāpiri te ±. Tāpiri 6 ki te 4\sqrt{66}.
x=\frac{2\sqrt{66}+3}{17}
Whakawehe 6+4\sqrt{66} ki te 34.
x=\frac{6-4\sqrt{66}}{34}
Nā, me whakaoti te whārite x=\frac{6±4\sqrt{66}}{34} ina he tango te ±. Tango 4\sqrt{66} mai i 6.
x=\frac{3-2\sqrt{66}}{17}
Whakawehe 6-4\sqrt{66} ki te 34.
x=\frac{2\sqrt{66}+3}{17} x=\frac{3-2\sqrt{66}}{17}
Kua oti te whārite te whakatau.
17x^{2}-6x-15=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
17x^{2}-6x-15-\left(-15\right)=-\left(-15\right)
Me tāpiri 15 ki ngā taha e rua o te whārite.
17x^{2}-6x=-\left(-15\right)
Mā te tango i te -15 i a ia ake anō ka toe ko te 0.
17x^{2}-6x=15
Tango -15 mai i 0.
\frac{17x^{2}-6x}{17}=\frac{15}{17}
Whakawehea ngā taha e rua ki te 17.
x^{2}-\frac{6}{17}x=\frac{15}{17}
Mā te whakawehe ki te 17 ka wetekia te whakareanga ki te 17.
x^{2}-\frac{6}{17}x+\left(-\frac{3}{17}\right)^{2}=\frac{15}{17}+\left(-\frac{3}{17}\right)^{2}
Whakawehea te -\frac{6}{17}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{17}. Nā, tāpiria te pūrua o te -\frac{3}{17} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{6}{17}x+\frac{9}{289}=\frac{15}{17}+\frac{9}{289}
Pūruatia -\frac{3}{17} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{6}{17}x+\frac{9}{289}=\frac{264}{289}
Tāpiri \frac{15}{17} ki te \frac{9}{289} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{17}\right)^{2}=\frac{264}{289}
Tauwehea x^{2}-\frac{6}{17}x+\frac{9}{289}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{17}\right)^{2}}=\sqrt{\frac{264}{289}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{17}=\frac{2\sqrt{66}}{17} x-\frac{3}{17}=-\frac{2\sqrt{66}}{17}
Whakarūnātia.
x=\frac{2\sqrt{66}+3}{17} x=\frac{3-2\sqrt{66}}{17}
Me tāpiri \frac{3}{17} ki ngā taha e rua o te whārite.