Whakaoti mō k
k=-\frac{\sqrt{39}i}{39}\approx -0-0.160128154i
k=\frac{\sqrt{39}i}{39}\approx 0.160128154i
Tohaina
Kua tāruatia ki te papatopenga
17k^{2}+22k^{2}+1=0
Whakareatia te k ki te k, ka k^{2}.
39k^{2}+1=0
Pahekotia te 17k^{2} me 22k^{2}, ka 39k^{2}.
39k^{2}=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
k^{2}=-\frac{1}{39}
Whakawehea ngā taha e rua ki te 39.
k=\frac{\sqrt{39}i}{39} k=-\frac{\sqrt{39}i}{39}
Kua oti te whārite te whakatau.
17k^{2}+22k^{2}+1=0
Whakareatia te k ki te k, ka k^{2}.
39k^{2}+1=0
Pahekotia te 17k^{2} me 22k^{2}, ka 39k^{2}.
k=\frac{0±\sqrt{0^{2}-4\times 39}}{2\times 39}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 39 mō a, 0 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\times 39}}{2\times 39}
Pūrua 0.
k=\frac{0±\sqrt{-156}}{2\times 39}
Whakareatia -4 ki te 39.
k=\frac{0±2\sqrt{39}i}{2\times 39}
Tuhia te pūtakerua o te -156.
k=\frac{0±2\sqrt{39}i}{78}
Whakareatia 2 ki te 39.
k=\frac{\sqrt{39}i}{39}
Nā, me whakaoti te whārite k=\frac{0±2\sqrt{39}i}{78} ina he tāpiri te ±.
k=-\frac{\sqrt{39}i}{39}
Nā, me whakaoti te whārite k=\frac{0±2\sqrt{39}i}{78} ina he tango te ±.
k=\frac{\sqrt{39}i}{39} k=-\frac{\sqrt{39}i}{39}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}