Tīpoka ki ngā ihirangi matua
Whakaoti mō k
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

17k^{2}+22k^{2}+1=0
Whakareatia te k ki te k, ka k^{2}.
39k^{2}+1=0
Pahekotia te 17k^{2} me 22k^{2}, ka 39k^{2}.
39k^{2}=-1
Tangohia te 1 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
k^{2}=-\frac{1}{39}
Whakawehea ngā taha e rua ki te 39.
k=\frac{\sqrt{39}i}{39} k=-\frac{\sqrt{39}i}{39}
Kua oti te whārite te whakatau.
17k^{2}+22k^{2}+1=0
Whakareatia te k ki te k, ka k^{2}.
39k^{2}+1=0
Pahekotia te 17k^{2} me 22k^{2}, ka 39k^{2}.
k=\frac{0±\sqrt{0^{2}-4\times 39}}{2\times 39}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 39 mō a, 0 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\times 39}}{2\times 39}
Pūrua 0.
k=\frac{0±\sqrt{-156}}{2\times 39}
Whakareatia -4 ki te 39.
k=\frac{0±2\sqrt{39}i}{2\times 39}
Tuhia te pūtakerua o te -156.
k=\frac{0±2\sqrt{39}i}{78}
Whakareatia 2 ki te 39.
k=\frac{\sqrt{39}i}{39}
Nā, me whakaoti te whārite k=\frac{0±2\sqrt{39}i}{78} ina he tāpiri te ±.
k=-\frac{\sqrt{39}i}{39}
Nā, me whakaoti te whārite k=\frac{0±2\sqrt{39}i}{78} ina he tango te ±.
k=\frac{\sqrt{39}i}{39} k=-\frac{\sqrt{39}i}{39}
Kua oti te whārite te whakatau.