Whakaoti mō t
t = \frac{\sqrt{155}}{7} \approx 1.778557085
t = -\frac{\sqrt{155}}{7} \approx -1.778557085
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
17 - 1.5 = \frac { 1 } { 2 } \times 9.8 \times t ^ { 2 }
Tohaina
Kua tāruatia ki te papatopenga
15.5=\frac{1}{2}\times 9.8t^{2}
Tangohia te 1.5 i te 17, ka 15.5.
15.5=\frac{49}{10}t^{2}
Whakareatia te \frac{1}{2} ki te 9.8, ka \frac{49}{10}.
\frac{49}{10}t^{2}=15.5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
t^{2}=15.5\times \frac{10}{49}
Me whakarea ngā taha e rua ki te \frac{10}{49}, te tau utu o \frac{49}{10}.
t^{2}=\frac{155}{49}
Whakareatia te 15.5 ki te \frac{10}{49}, ka \frac{155}{49}.
t=\frac{\sqrt{155}}{7} t=-\frac{\sqrt{155}}{7}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
15.5=\frac{1}{2}\times 9.8t^{2}
Tangohia te 1.5 i te 17, ka 15.5.
15.5=\frac{49}{10}t^{2}
Whakareatia te \frac{1}{2} ki te 9.8, ka \frac{49}{10}.
\frac{49}{10}t^{2}=15.5
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{49}{10}t^{2}-15.5=0
Tangohia te 15.5 mai i ngā taha e rua.
t=\frac{0±\sqrt{0^{2}-4\times \frac{49}{10}\left(-15.5\right)}}{2\times \frac{49}{10}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{49}{10} mō a, 0 mō b, me -15.5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times \frac{49}{10}\left(-15.5\right)}}{2\times \frac{49}{10}}
Pūrua 0.
t=\frac{0±\sqrt{-\frac{98}{5}\left(-15.5\right)}}{2\times \frac{49}{10}}
Whakareatia -4 ki te \frac{49}{10}.
t=\frac{0±\sqrt{\frac{1519}{5}}}{2\times \frac{49}{10}}
Whakareatia -\frac{98}{5} ki te -15.5 mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
t=\frac{0±\frac{7\sqrt{155}}{5}}{2\times \frac{49}{10}}
Tuhia te pūtakerua o te \frac{1519}{5}.
t=\frac{0±\frac{7\sqrt{155}}{5}}{\frac{49}{5}}
Whakareatia 2 ki te \frac{49}{10}.
t=\frac{\sqrt{155}}{7}
Nā, me whakaoti te whārite t=\frac{0±\frac{7\sqrt{155}}{5}}{\frac{49}{5}} ina he tāpiri te ±.
t=-\frac{\sqrt{155}}{7}
Nā, me whakaoti te whārite t=\frac{0±\frac{7\sqrt{155}}{5}}{\frac{49}{5}} ina he tango te ±.
t=\frac{\sqrt{155}}{7} t=-\frac{\sqrt{155}}{7}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}