Whakaoti mō t
t=1
t = \frac{17}{5} = 3\frac{2}{5} = 3.4
Tohaina
Kua tāruatia ki te papatopenga
22t-5t^{2}=17
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
22t-5t^{2}-17=0
Tangohia te 17 mai i ngā taha e rua.
-5t^{2}+22t-17=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=22 ab=-5\left(-17\right)=85
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -5t^{2}+at+bt-17. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,85 5,17
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 85.
1+85=86 5+17=22
Tātaihia te tapeke mō ia takirua.
a=17 b=5
Ko te otinga te takirua ka hoatu i te tapeke 22.
\left(-5t^{2}+17t\right)+\left(5t-17\right)
Tuhia anō te -5t^{2}+22t-17 hei \left(-5t^{2}+17t\right)+\left(5t-17\right).
-t\left(5t-17\right)+5t-17
Whakatauwehea atu -t i te -5t^{2}+17t.
\left(5t-17\right)\left(-t+1\right)
Whakatauwehea atu te kīanga pātahi 5t-17 mā te whakamahi i te āhuatanga tātai tohatoha.
t=\frac{17}{5} t=1
Hei kimi otinga whārite, me whakaoti te 5t-17=0 me te -t+1=0.
22t-5t^{2}=17
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
22t-5t^{2}-17=0
Tangohia te 17 mai i ngā taha e rua.
-5t^{2}+22t-17=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-22±\sqrt{22^{2}-4\left(-5\right)\left(-17\right)}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, 22 mō b, me -17 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-22±\sqrt{484-4\left(-5\right)\left(-17\right)}}{2\left(-5\right)}
Pūrua 22.
t=\frac{-22±\sqrt{484+20\left(-17\right)}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
t=\frac{-22±\sqrt{484-340}}{2\left(-5\right)}
Whakareatia 20 ki te -17.
t=\frac{-22±\sqrt{144}}{2\left(-5\right)}
Tāpiri 484 ki te -340.
t=\frac{-22±12}{2\left(-5\right)}
Tuhia te pūtakerua o te 144.
t=\frac{-22±12}{-10}
Whakareatia 2 ki te -5.
t=-\frac{10}{-10}
Nā, me whakaoti te whārite t=\frac{-22±12}{-10} ina he tāpiri te ±. Tāpiri -22 ki te 12.
t=1
Whakawehe -10 ki te -10.
t=-\frac{34}{-10}
Nā, me whakaoti te whārite t=\frac{-22±12}{-10} ina he tango te ±. Tango 12 mai i -22.
t=\frac{17}{5}
Whakahekea te hautanga \frac{-34}{-10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
t=1 t=\frac{17}{5}
Kua oti te whārite te whakatau.
22t-5t^{2}=17
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-5t^{2}+22t=17
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-5t^{2}+22t}{-5}=\frac{17}{-5}
Whakawehea ngā taha e rua ki te -5.
t^{2}+\frac{22}{-5}t=\frac{17}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
t^{2}-\frac{22}{5}t=\frac{17}{-5}
Whakawehe 22 ki te -5.
t^{2}-\frac{22}{5}t=-\frac{17}{5}
Whakawehe 17 ki te -5.
t^{2}-\frac{22}{5}t+\left(-\frac{11}{5}\right)^{2}=-\frac{17}{5}+\left(-\frac{11}{5}\right)^{2}
Whakawehea te -\frac{22}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{5}. Nā, tāpiria te pūrua o te -\frac{11}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{22}{5}t+\frac{121}{25}=-\frac{17}{5}+\frac{121}{25}
Pūruatia -\frac{11}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-\frac{22}{5}t+\frac{121}{25}=\frac{36}{25}
Tāpiri -\frac{17}{5} ki te \frac{121}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(t-\frac{11}{5}\right)^{2}=\frac{36}{25}
Tauwehea t^{2}-\frac{22}{5}t+\frac{121}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{11}{5}\right)^{2}}=\sqrt{\frac{36}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{11}{5}=\frac{6}{5} t-\frac{11}{5}=-\frac{6}{5}
Whakarūnātia.
t=\frac{17}{5} t=1
Me tāpiri \frac{11}{5} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}