Aromātai
-2.5
Tauwehe
-2.5
Tohaina
Kua tāruatia ki te papatopenga
16.09-\left(-\frac{42}{5}\left(-\frac{7}{12}\right)\right)-\left(-3.7\right)^{2}
Me tahuri ki tau ā-ira -8.4 ki te hautau -\frac{84}{10}. Whakahekea te hautanga -\frac{84}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
16.09-\frac{-42\left(-7\right)}{5\times 12}-\left(-3.7\right)^{2}
Me whakarea te -\frac{42}{5} ki te -\frac{7}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
16.09-\frac{294}{60}-\left(-3.7\right)^{2}
Mahia ngā whakarea i roto i te hautanga \frac{-42\left(-7\right)}{5\times 12}.
16.09-\frac{49}{10}-\left(-3.7\right)^{2}
Whakahekea te hautanga \frac{294}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{1609}{100}-\frac{49}{10}-\left(-3.7\right)^{2}
Me tahuri ki tau ā-ira 16.09 ki te hautau \frac{1609}{100}.
\frac{1609}{100}-\frac{490}{100}-\left(-3.7\right)^{2}
Ko te maha noa iti rawa atu o 100 me 10 ko 100. Me tahuri \frac{1609}{100} me \frac{49}{10} ki te hautau me te tautūnga 100.
\frac{1609-490}{100}-\left(-3.7\right)^{2}
Tā te mea he rite te tauraro o \frac{1609}{100} me \frac{490}{100}, me tango rāua mā te tango i ō raua taurunga.
\frac{1119}{100}-\left(-3.7\right)^{2}
Tangohia te 490 i te 1609, ka 1119.
\frac{1119}{100}-13.69
Tātaihia te -3.7 mā te pū o 2, kia riro ko 13.69.
\frac{1119}{100}-\frac{1369}{100}
Me tahuri ki tau ā-ira 13.69 ki te hautau \frac{1369}{100}.
\frac{1119-1369}{100}
Tā te mea he rite te tauraro o \frac{1119}{100} me \frac{1369}{100}, me tango rāua mā te tango i ō raua taurunga.
\frac{-250}{100}
Tangohia te 1369 i te 1119, ka -250.
-\frac{5}{2}
Whakahekea te hautanga \frac{-250}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 50.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}