Whakaoti mō x
x=2\sqrt{5}+2\approx 6.472135955
x=2-2\sqrt{5}\approx -2.472135955
Graph
Tohaina
Kua tāruatia ki te papatopenga
16+x^{2}+16-8x+x^{2}+16=\left(4\sqrt{5}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4-x\right)^{2}.
32+x^{2}-8x+x^{2}+16=\left(4\sqrt{5}\right)^{2}
Tāpirihia te 16 ki te 16, ka 32.
32+2x^{2}-8x+16=\left(4\sqrt{5}\right)^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
48+2x^{2}-8x=\left(4\sqrt{5}\right)^{2}
Tāpirihia te 32 ki te 16, ka 48.
48+2x^{2}-8x=4^{2}\left(\sqrt{5}\right)^{2}
Whakarohaina te \left(4\sqrt{5}\right)^{2}.
48+2x^{2}-8x=16\left(\sqrt{5}\right)^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
48+2x^{2}-8x=16\times 5
Ko te pūrua o \sqrt{5} ko 5.
48+2x^{2}-8x=80
Whakareatia te 16 ki te 5, ka 80.
48+2x^{2}-8x-80=0
Tangohia te 80 mai i ngā taha e rua.
-32+2x^{2}-8x=0
Tangohia te 80 i te 48, ka -32.
2x^{2}-8x-32=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-32\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -8 mō b, me -32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-32\right)}}{2\times 2}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-32\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-\left(-8\right)±\sqrt{64+256}}{2\times 2}
Whakareatia -8 ki te -32.
x=\frac{-\left(-8\right)±\sqrt{320}}{2\times 2}
Tāpiri 64 ki te 256.
x=\frac{-\left(-8\right)±8\sqrt{5}}{2\times 2}
Tuhia te pūtakerua o te 320.
x=\frac{8±8\sqrt{5}}{2\times 2}
Ko te tauaro o -8 ko 8.
x=\frac{8±8\sqrt{5}}{4}
Whakareatia 2 ki te 2.
x=\frac{8\sqrt{5}+8}{4}
Nā, me whakaoti te whārite x=\frac{8±8\sqrt{5}}{4} ina he tāpiri te ±. Tāpiri 8 ki te 8\sqrt{5}.
x=2\sqrt{5}+2
Whakawehe 8+8\sqrt{5} ki te 4.
x=\frac{8-8\sqrt{5}}{4}
Nā, me whakaoti te whārite x=\frac{8±8\sqrt{5}}{4} ina he tango te ±. Tango 8\sqrt{5} mai i 8.
x=2-2\sqrt{5}
Whakawehe 8-8\sqrt{5} ki te 4.
x=2\sqrt{5}+2 x=2-2\sqrt{5}
Kua oti te whārite te whakatau.
16+x^{2}+16-8x+x^{2}+16=\left(4\sqrt{5}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4-x\right)^{2}.
32+x^{2}-8x+x^{2}+16=\left(4\sqrt{5}\right)^{2}
Tāpirihia te 16 ki te 16, ka 32.
32+2x^{2}-8x+16=\left(4\sqrt{5}\right)^{2}
Pahekotia te x^{2} me x^{2}, ka 2x^{2}.
48+2x^{2}-8x=\left(4\sqrt{5}\right)^{2}
Tāpirihia te 32 ki te 16, ka 48.
48+2x^{2}-8x=4^{2}\left(\sqrt{5}\right)^{2}
Whakarohaina te \left(4\sqrt{5}\right)^{2}.
48+2x^{2}-8x=16\left(\sqrt{5}\right)^{2}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
48+2x^{2}-8x=16\times 5
Ko te pūrua o \sqrt{5} ko 5.
48+2x^{2}-8x=80
Whakareatia te 16 ki te 5, ka 80.
2x^{2}-8x=80-48
Tangohia te 48 mai i ngā taha e rua.
2x^{2}-8x=32
Tangohia te 48 i te 80, ka 32.
\frac{2x^{2}-8x}{2}=\frac{32}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{32}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-4x=\frac{32}{2}
Whakawehe -8 ki te 2.
x^{2}-4x=16
Whakawehe 32 ki te 2.
x^{2}-4x+\left(-2\right)^{2}=16+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=16+4
Pūrua -2.
x^{2}-4x+4=20
Tāpiri 16 ki te 4.
\left(x-2\right)^{2}=20
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{20}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=2\sqrt{5} x-2=-2\sqrt{5}
Whakarūnātia.
x=2\sqrt{5}+2 x=2-2\sqrt{5}
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}