Whakaoti mō x (complex solution)
x=2+\frac{1}{4}i=2+0.25i
x=2-\frac{1}{4}i=2-0.25i
Graph
Tohaina
Kua tāruatia ki te papatopenga
16x^{2}-64x+65=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 16\times 65}}{2\times 16}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 16 mō a, -64 mō b, me 65 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-64\right)±\sqrt{4096-4\times 16\times 65}}{2\times 16}
Pūrua -64.
x=\frac{-\left(-64\right)±\sqrt{4096-64\times 65}}{2\times 16}
Whakareatia -4 ki te 16.
x=\frac{-\left(-64\right)±\sqrt{4096-4160}}{2\times 16}
Whakareatia -64 ki te 65.
x=\frac{-\left(-64\right)±\sqrt{-64}}{2\times 16}
Tāpiri 4096 ki te -4160.
x=\frac{-\left(-64\right)±8i}{2\times 16}
Tuhia te pūtakerua o te -64.
x=\frac{64±8i}{2\times 16}
Ko te tauaro o -64 ko 64.
x=\frac{64±8i}{32}
Whakareatia 2 ki te 16.
x=\frac{64+8i}{32}
Nā, me whakaoti te whārite x=\frac{64±8i}{32} ina he tāpiri te ±. Tāpiri 64 ki te 8i.
x=2+\frac{1}{4}i
Whakawehe 64+8i ki te 32.
x=\frac{64-8i}{32}
Nā, me whakaoti te whārite x=\frac{64±8i}{32} ina he tango te ±. Tango 8i mai i 64.
x=2-\frac{1}{4}i
Whakawehe 64-8i ki te 32.
x=2+\frac{1}{4}i x=2-\frac{1}{4}i
Kua oti te whārite te whakatau.
16x^{2}-64x+65=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
16x^{2}-64x+65-65=-65
Me tango 65 mai i ngā taha e rua o te whārite.
16x^{2}-64x=-65
Mā te tango i te 65 i a ia ake anō ka toe ko te 0.
\frac{16x^{2}-64x}{16}=-\frac{65}{16}
Whakawehea ngā taha e rua ki te 16.
x^{2}+\left(-\frac{64}{16}\right)x=-\frac{65}{16}
Mā te whakawehe ki te 16 ka wetekia te whakareanga ki te 16.
x^{2}-4x=-\frac{65}{16}
Whakawehe -64 ki te 16.
x^{2}-4x+\left(-2\right)^{2}=-\frac{65}{16}+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-\frac{65}{16}+4
Pūrua -2.
x^{2}-4x+4=-\frac{1}{16}
Tāpiri -\frac{65}{16} ki te 4.
\left(x-2\right)^{2}=-\frac{1}{16}
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-\frac{1}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=\frac{1}{4}i x-2=-\frac{1}{4}i
Whakarūnātia.
x=2+\frac{1}{4}i x=2-\frac{1}{4}i
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}