Tauwehe
\left(2x-3\right)\left(8x-1\right)
Aromātai
\left(2x-3\right)\left(8x-1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-26 ab=16\times 3=48
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 16x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-48 -2,-24 -3,-16 -4,-12 -6,-8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 48.
-1-48=-49 -2-24=-26 -3-16=-19 -4-12=-16 -6-8=-14
Tātaihia te tapeke mō ia takirua.
a=-24 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -26.
\left(16x^{2}-24x\right)+\left(-2x+3\right)
Tuhia anō te 16x^{2}-26x+3 hei \left(16x^{2}-24x\right)+\left(-2x+3\right).
8x\left(2x-3\right)-\left(2x-3\right)
Tauwehea te 8x i te tuatahi me te -1 i te rōpū tuarua.
\left(2x-3\right)\left(8x-1\right)
Whakatauwehea atu te kīanga pātahi 2x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
16x^{2}-26x+3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 16\times 3}}{2\times 16}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-26\right)±\sqrt{676-4\times 16\times 3}}{2\times 16}
Pūrua -26.
x=\frac{-\left(-26\right)±\sqrt{676-64\times 3}}{2\times 16}
Whakareatia -4 ki te 16.
x=\frac{-\left(-26\right)±\sqrt{676-192}}{2\times 16}
Whakareatia -64 ki te 3.
x=\frac{-\left(-26\right)±\sqrt{484}}{2\times 16}
Tāpiri 676 ki te -192.
x=\frac{-\left(-26\right)±22}{2\times 16}
Tuhia te pūtakerua o te 484.
x=\frac{26±22}{2\times 16}
Ko te tauaro o -26 ko 26.
x=\frac{26±22}{32}
Whakareatia 2 ki te 16.
x=\frac{48}{32}
Nā, me whakaoti te whārite x=\frac{26±22}{32} ina he tāpiri te ±. Tāpiri 26 ki te 22.
x=\frac{3}{2}
Whakahekea te hautanga \frac{48}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
x=\frac{4}{32}
Nā, me whakaoti te whārite x=\frac{26±22}{32} ina he tango te ±. Tango 22 mai i 26.
x=\frac{1}{8}
Whakahekea te hautanga \frac{4}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
16x^{2}-26x+3=16\left(x-\frac{3}{2}\right)\left(x-\frac{1}{8}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{2} mō te x_{1} me te \frac{1}{8} mō te x_{2}.
16x^{2}-26x+3=16\times \frac{2x-3}{2}\left(x-\frac{1}{8}\right)
Tango \frac{3}{2} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
16x^{2}-26x+3=16\times \frac{2x-3}{2}\times \frac{8x-1}{8}
Tango \frac{1}{8} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
16x^{2}-26x+3=16\times \frac{\left(2x-3\right)\left(8x-1\right)}{2\times 8}
Whakareatia \frac{2x-3}{2} ki te \frac{8x-1}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
16x^{2}-26x+3=16\times \frac{\left(2x-3\right)\left(8x-1\right)}{16}
Whakareatia 2 ki te 8.
16x^{2}-26x+3=\left(2x-3\right)\left(8x-1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 16 i roto i te 16 me te 16.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}