Whakaoti mō x
x=-\frac{3}{4}=-0.75
x=\frac{1}{4}=0.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=8 ab=16\left(-3\right)=-48
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 16x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,48 -2,24 -3,16 -4,12 -6,8
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
Tātaihia te tapeke mō ia takirua.
a=-4 b=12
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(16x^{2}-4x\right)+\left(12x-3\right)
Tuhia anō te 16x^{2}+8x-3 hei \left(16x^{2}-4x\right)+\left(12x-3\right).
4x\left(4x-1\right)+3\left(4x-1\right)
Tauwehea te 4x i te tuatahi me te 3 i te rōpū tuarua.
\left(4x-1\right)\left(4x+3\right)
Whakatauwehea atu te kīanga pātahi 4x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{4} x=-\frac{3}{4}
Hei kimi otinga whārite, me whakaoti te 4x-1=0 me te 4x+3=0.
16x^{2}+8x-3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-8±\sqrt{8^{2}-4\times 16\left(-3\right)}}{2\times 16}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 16 mō a, 8 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 16\left(-3\right)}}{2\times 16}
Pūrua 8.
x=\frac{-8±\sqrt{64-64\left(-3\right)}}{2\times 16}
Whakareatia -4 ki te 16.
x=\frac{-8±\sqrt{64+192}}{2\times 16}
Whakareatia -64 ki te -3.
x=\frac{-8±\sqrt{256}}{2\times 16}
Tāpiri 64 ki te 192.
x=\frac{-8±16}{2\times 16}
Tuhia te pūtakerua o te 256.
x=\frac{-8±16}{32}
Whakareatia 2 ki te 16.
x=\frac{8}{32}
Nā, me whakaoti te whārite x=\frac{-8±16}{32} ina he tāpiri te ±. Tāpiri -8 ki te 16.
x=\frac{1}{4}
Whakahekea te hautanga \frac{8}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=-\frac{24}{32}
Nā, me whakaoti te whārite x=\frac{-8±16}{32} ina he tango te ±. Tango 16 mai i -8.
x=-\frac{3}{4}
Whakahekea te hautanga \frac{-24}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=\frac{1}{4} x=-\frac{3}{4}
Kua oti te whārite te whakatau.
16x^{2}+8x-3=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
16x^{2}+8x-3-\left(-3\right)=-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
16x^{2}+8x=-\left(-3\right)
Mā te tango i te -3 i a ia ake anō ka toe ko te 0.
16x^{2}+8x=3
Tango -3 mai i 0.
\frac{16x^{2}+8x}{16}=\frac{3}{16}
Whakawehea ngā taha e rua ki te 16.
x^{2}+\frac{8}{16}x=\frac{3}{16}
Mā te whakawehe ki te 16 ka wetekia te whakareanga ki te 16.
x^{2}+\frac{1}{2}x=\frac{3}{16}
Whakahekea te hautanga \frac{8}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{3}{16}+\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{3+1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{4}
Tāpiri \frac{3}{16} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{4}\right)^{2}=\frac{1}{4}
Tauwehea x^{2}+\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{4}=\frac{1}{2} x+\frac{1}{4}=-\frac{1}{2}
Whakarūnātia.
x=\frac{1}{4} x=-\frac{3}{4}
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}