Whakaoti mō x
x = -\frac{9}{2} = -4\frac{1}{2} = -4.5
x=-\frac{1}{8}=-0.125
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=74 ab=16\times 9=144
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 16x^{2}+ax+bx+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,144 2,72 3,48 4,36 6,24 8,18 9,16 12,12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 144.
1+144=145 2+72=74 3+48=51 4+36=40 6+24=30 8+18=26 9+16=25 12+12=24
Tātaihia te tapeke mō ia takirua.
a=2 b=72
Ko te otinga te takirua ka hoatu i te tapeke 74.
\left(16x^{2}+2x\right)+\left(72x+9\right)
Tuhia anō te 16x^{2}+74x+9 hei \left(16x^{2}+2x\right)+\left(72x+9\right).
2x\left(8x+1\right)+9\left(8x+1\right)
Tauwehea te 2x i te tuatahi me te 9 i te rōpū tuarua.
\left(8x+1\right)\left(2x+9\right)
Whakatauwehea atu te kīanga pātahi 8x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{1}{8} x=-\frac{9}{2}
Hei kimi otinga whārite, me whakaoti te 8x+1=0 me te 2x+9=0.
16x^{2}+74x+9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-74±\sqrt{74^{2}-4\times 16\times 9}}{2\times 16}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 16 mō a, 74 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-74±\sqrt{5476-4\times 16\times 9}}{2\times 16}
Pūrua 74.
x=\frac{-74±\sqrt{5476-64\times 9}}{2\times 16}
Whakareatia -4 ki te 16.
x=\frac{-74±\sqrt{5476-576}}{2\times 16}
Whakareatia -64 ki te 9.
x=\frac{-74±\sqrt{4900}}{2\times 16}
Tāpiri 5476 ki te -576.
x=\frac{-74±70}{2\times 16}
Tuhia te pūtakerua o te 4900.
x=\frac{-74±70}{32}
Whakareatia 2 ki te 16.
x=-\frac{4}{32}
Nā, me whakaoti te whārite x=\frac{-74±70}{32} ina he tāpiri te ±. Tāpiri -74 ki te 70.
x=-\frac{1}{8}
Whakahekea te hautanga \frac{-4}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{144}{32}
Nā, me whakaoti te whārite x=\frac{-74±70}{32} ina he tango te ±. Tango 70 mai i -74.
x=-\frac{9}{2}
Whakahekea te hautanga \frac{-144}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
x=-\frac{1}{8} x=-\frac{9}{2}
Kua oti te whārite te whakatau.
16x^{2}+74x+9=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
16x^{2}+74x+9-9=-9
Me tango 9 mai i ngā taha e rua o te whārite.
16x^{2}+74x=-9
Mā te tango i te 9 i a ia ake anō ka toe ko te 0.
\frac{16x^{2}+74x}{16}=-\frac{9}{16}
Whakawehea ngā taha e rua ki te 16.
x^{2}+\frac{74}{16}x=-\frac{9}{16}
Mā te whakawehe ki te 16 ka wetekia te whakareanga ki te 16.
x^{2}+\frac{37}{8}x=-\frac{9}{16}
Whakahekea te hautanga \frac{74}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{37}{8}x+\left(\frac{37}{16}\right)^{2}=-\frac{9}{16}+\left(\frac{37}{16}\right)^{2}
Whakawehea te \frac{37}{8}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{37}{16}. Nā, tāpiria te pūrua o te \frac{37}{16} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{37}{8}x+\frac{1369}{256}=-\frac{9}{16}+\frac{1369}{256}
Pūruatia \frac{37}{16} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{37}{8}x+\frac{1369}{256}=\frac{1225}{256}
Tāpiri -\frac{9}{16} ki te \frac{1369}{256} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{37}{16}\right)^{2}=\frac{1225}{256}
Tauwehea x^{2}+\frac{37}{8}x+\frac{1369}{256}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{37}{16}\right)^{2}}=\sqrt{\frac{1225}{256}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{37}{16}=\frac{35}{16} x+\frac{37}{16}=-\frac{35}{16}
Whakarūnātia.
x=-\frac{1}{8} x=-\frac{9}{2}
Me tango \frac{37}{16} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}