Tauwehe
\left(x+1\right)\left(16x+3\right)
Aromātai
\left(x+1\right)\left(16x+3\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=19 ab=16\times 3=48
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 16x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,48 2,24 3,16 4,12 6,8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 48.
1+48=49 2+24=26 3+16=19 4+12=16 6+8=14
Tātaihia te tapeke mō ia takirua.
a=3 b=16
Ko te otinga te takirua ka hoatu i te tapeke 19.
\left(16x^{2}+3x\right)+\left(16x+3\right)
Tuhia anō te 16x^{2}+19x+3 hei \left(16x^{2}+3x\right)+\left(16x+3\right).
x\left(16x+3\right)+16x+3
Whakatauwehea atu x i te 16x^{2}+3x.
\left(16x+3\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi 16x+3 mā te whakamahi i te āhuatanga tātai tohatoha.
16x^{2}+19x+3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-19±\sqrt{19^{2}-4\times 16\times 3}}{2\times 16}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-19±\sqrt{361-4\times 16\times 3}}{2\times 16}
Pūrua 19.
x=\frac{-19±\sqrt{361-64\times 3}}{2\times 16}
Whakareatia -4 ki te 16.
x=\frac{-19±\sqrt{361-192}}{2\times 16}
Whakareatia -64 ki te 3.
x=\frac{-19±\sqrt{169}}{2\times 16}
Tāpiri 361 ki te -192.
x=\frac{-19±13}{2\times 16}
Tuhia te pūtakerua o te 169.
x=\frac{-19±13}{32}
Whakareatia 2 ki te 16.
x=-\frac{6}{32}
Nā, me whakaoti te whārite x=\frac{-19±13}{32} ina he tāpiri te ±. Tāpiri -19 ki te 13.
x=-\frac{3}{16}
Whakahekea te hautanga \frac{-6}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{32}{32}
Nā, me whakaoti te whārite x=\frac{-19±13}{32} ina he tango te ±. Tango 13 mai i -19.
x=-1
Whakawehe -32 ki te 32.
16x^{2}+19x+3=16\left(x-\left(-\frac{3}{16}\right)\right)\left(x-\left(-1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{3}{16} mō te x_{1} me te -1 mō te x_{2}.
16x^{2}+19x+3=16\left(x+\frac{3}{16}\right)\left(x+1\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
16x^{2}+19x+3=16\times \frac{16x+3}{16}\left(x+1\right)
Tāpiri \frac{3}{16} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
16x^{2}+19x+3=\left(16x+3\right)\left(x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 16 i roto i te 16 me te 16.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}