Whakaoti mō x
x = -\frac{9}{8} = -1\frac{1}{8} = -1.125
x=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=10 ab=16\left(-9\right)=-144
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 16x^{2}+ax+bx-9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,144 -2,72 -3,48 -4,36 -6,24 -8,18 -9,16 -12,12
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -144.
-1+144=143 -2+72=70 -3+48=45 -4+36=32 -6+24=18 -8+18=10 -9+16=7 -12+12=0
Tātaihia te tapeke mō ia takirua.
a=-8 b=18
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(16x^{2}-8x\right)+\left(18x-9\right)
Tuhia anō te 16x^{2}+10x-9 hei \left(16x^{2}-8x\right)+\left(18x-9\right).
8x\left(2x-1\right)+9\left(2x-1\right)
Tauwehea te 8x i te tuatahi me te 9 i te rōpū tuarua.
\left(2x-1\right)\left(8x+9\right)
Whakatauwehea atu te kīanga pātahi 2x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{2} x=-\frac{9}{8}
Hei kimi otinga whārite, me whakaoti te 2x-1=0 me te 8x+9=0.
16x^{2}+10x-9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-10±\sqrt{10^{2}-4\times 16\left(-9\right)}}{2\times 16}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 16 mō a, 10 mō b, me -9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 16\left(-9\right)}}{2\times 16}
Pūrua 10.
x=\frac{-10±\sqrt{100-64\left(-9\right)}}{2\times 16}
Whakareatia -4 ki te 16.
x=\frac{-10±\sqrt{100+576}}{2\times 16}
Whakareatia -64 ki te -9.
x=\frac{-10±\sqrt{676}}{2\times 16}
Tāpiri 100 ki te 576.
x=\frac{-10±26}{2\times 16}
Tuhia te pūtakerua o te 676.
x=\frac{-10±26}{32}
Whakareatia 2 ki te 16.
x=\frac{16}{32}
Nā, me whakaoti te whārite x=\frac{-10±26}{32} ina he tāpiri te ±. Tāpiri -10 ki te 26.
x=\frac{1}{2}
Whakahekea te hautanga \frac{16}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
x=-\frac{36}{32}
Nā, me whakaoti te whārite x=\frac{-10±26}{32} ina he tango te ±. Tango 26 mai i -10.
x=-\frac{9}{8}
Whakahekea te hautanga \frac{-36}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{1}{2} x=-\frac{9}{8}
Kua oti te whārite te whakatau.
16x^{2}+10x-9=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
16x^{2}+10x-9-\left(-9\right)=-\left(-9\right)
Me tāpiri 9 ki ngā taha e rua o te whārite.
16x^{2}+10x=-\left(-9\right)
Mā te tango i te -9 i a ia ake anō ka toe ko te 0.
16x^{2}+10x=9
Tango -9 mai i 0.
\frac{16x^{2}+10x}{16}=\frac{9}{16}
Whakawehea ngā taha e rua ki te 16.
x^{2}+\frac{10}{16}x=\frac{9}{16}
Mā te whakawehe ki te 16 ka wetekia te whakareanga ki te 16.
x^{2}+\frac{5}{8}x=\frac{9}{16}
Whakahekea te hautanga \frac{10}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{5}{8}x+\left(\frac{5}{16}\right)^{2}=\frac{9}{16}+\left(\frac{5}{16}\right)^{2}
Whakawehea te \frac{5}{8}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{16}. Nā, tāpiria te pūrua o te \frac{5}{16} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{8}x+\frac{25}{256}=\frac{9}{16}+\frac{25}{256}
Pūruatia \frac{5}{16} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{8}x+\frac{25}{256}=\frac{169}{256}
Tāpiri \frac{9}{16} ki te \frac{25}{256} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{16}\right)^{2}=\frac{169}{256}
Tauwehea x^{2}+\frac{5}{8}x+\frac{25}{256}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{16}\right)^{2}}=\sqrt{\frac{169}{256}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{16}=\frac{13}{16} x+\frac{5}{16}=-\frac{13}{16}
Whakarūnātia.
x=\frac{1}{2} x=-\frac{9}{8}
Me tango \frac{5}{16} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}