Whakaoti mō n
n<-7
Pātaitai
Algebra
16 n + 1 > 18 n + 15
Tohaina
Kua tāruatia ki te papatopenga
16n+1-18n>15
Tangohia te 18n mai i ngā taha e rua.
-2n+1>15
Pahekotia te 16n me -18n, ka -2n.
-2n>15-1
Tangohia te 1 mai i ngā taha e rua.
-2n>14
Tangohia te 1 i te 15, ka 14.
n<\frac{14}{-2}
Whakawehea ngā taha e rua ki te -2. I te mea he tōraro a -2, ka huri te ahunga koreōrite.
n<-7
Whakawehea te 14 ki te -2, kia riro ko -7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}