Tīpoka ki ngā ihirangi matua
Whakaoti mō k
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

k^{2}-9=0
Whakawehea ngā taha e rua ki te 16.
\left(k-3\right)\left(k+3\right)=0
Whakaarohia te k^{2}-9. Tuhia anō te k^{2}-9 hei k^{2}-3^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
k=3 k=-3
Hei kimi otinga whārite, me whakaoti te k-3=0 me te k+3=0.
16k^{2}=144
Me tāpiri te 144 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
k^{2}=\frac{144}{16}
Whakawehea ngā taha e rua ki te 16.
k^{2}=9
Whakawehea te 144 ki te 16, kia riro ko 9.
k=3 k=-3
Tuhia te pūtakerua o ngā taha e rua o te whārite.
16k^{2}-144=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
k=\frac{0±\sqrt{0^{2}-4\times 16\left(-144\right)}}{2\times 16}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 16 mō a, 0 mō b, me -144 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\times 16\left(-144\right)}}{2\times 16}
Pūrua 0.
k=\frac{0±\sqrt{-64\left(-144\right)}}{2\times 16}
Whakareatia -4 ki te 16.
k=\frac{0±\sqrt{9216}}{2\times 16}
Whakareatia -64 ki te -144.
k=\frac{0±96}{2\times 16}
Tuhia te pūtakerua o te 9216.
k=\frac{0±96}{32}
Whakareatia 2 ki te 16.
k=3
Nā, me whakaoti te whārite k=\frac{0±96}{32} ina he tāpiri te ±. Whakawehe 96 ki te 32.
k=-3
Nā, me whakaoti te whārite k=\frac{0±96}{32} ina he tango te ±. Whakawehe -96 ki te 32.
k=3 k=-3
Kua oti te whārite te whakatau.