Whakaoti mō b
b=\frac{1}{4}=0.25
b = \frac{5}{2} = 2\frac{1}{2} = 2.5
Tohaina
Kua tāruatia ki te papatopenga
8b^{2}-22b+5=0
Whakawehea ngā taha e rua ki te 2.
a+b=-22 ab=8\times 5=40
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 8b^{2}+ab+bb+5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-40 -2,-20 -4,-10 -5,-8
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 40.
-1-40=-41 -2-20=-22 -4-10=-14 -5-8=-13
Tātaihia te tapeke mō ia takirua.
a=-20 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -22.
\left(8b^{2}-20b\right)+\left(-2b+5\right)
Tuhia anō te 8b^{2}-22b+5 hei \left(8b^{2}-20b\right)+\left(-2b+5\right).
4b\left(2b-5\right)-\left(2b-5\right)
Tauwehea te 4b i te tuatahi me te -1 i te rōpū tuarua.
\left(2b-5\right)\left(4b-1\right)
Whakatauwehea atu te kīanga pātahi 2b-5 mā te whakamahi i te āhuatanga tātai tohatoha.
b=\frac{5}{2} b=\frac{1}{4}
Hei kimi otinga whārite, me whakaoti te 2b-5=0 me te 4b-1=0.
16b^{2}-44b+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-\left(-44\right)±\sqrt{\left(-44\right)^{2}-4\times 16\times 10}}{2\times 16}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 16 mō a, -44 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-44\right)±\sqrt{1936-4\times 16\times 10}}{2\times 16}
Pūrua -44.
b=\frac{-\left(-44\right)±\sqrt{1936-64\times 10}}{2\times 16}
Whakareatia -4 ki te 16.
b=\frac{-\left(-44\right)±\sqrt{1936-640}}{2\times 16}
Whakareatia -64 ki te 10.
b=\frac{-\left(-44\right)±\sqrt{1296}}{2\times 16}
Tāpiri 1936 ki te -640.
b=\frac{-\left(-44\right)±36}{2\times 16}
Tuhia te pūtakerua o te 1296.
b=\frac{44±36}{2\times 16}
Ko te tauaro o -44 ko 44.
b=\frac{44±36}{32}
Whakareatia 2 ki te 16.
b=\frac{80}{32}
Nā, me whakaoti te whārite b=\frac{44±36}{32} ina he tāpiri te ±. Tāpiri 44 ki te 36.
b=\frac{5}{2}
Whakahekea te hautanga \frac{80}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
b=\frac{8}{32}
Nā, me whakaoti te whārite b=\frac{44±36}{32} ina he tango te ±. Tango 36 mai i 44.
b=\frac{1}{4}
Whakahekea te hautanga \frac{8}{32} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
b=\frac{5}{2} b=\frac{1}{4}
Kua oti te whārite te whakatau.
16b^{2}-44b+10=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
16b^{2}-44b+10-10=-10
Me tango 10 mai i ngā taha e rua o te whārite.
16b^{2}-44b=-10
Mā te tango i te 10 i a ia ake anō ka toe ko te 0.
\frac{16b^{2}-44b}{16}=-\frac{10}{16}
Whakawehea ngā taha e rua ki te 16.
b^{2}+\left(-\frac{44}{16}\right)b=-\frac{10}{16}
Mā te whakawehe ki te 16 ka wetekia te whakareanga ki te 16.
b^{2}-\frac{11}{4}b=-\frac{10}{16}
Whakahekea te hautanga \frac{-44}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
b^{2}-\frac{11}{4}b=-\frac{5}{8}
Whakahekea te hautanga \frac{-10}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
b^{2}-\frac{11}{4}b+\left(-\frac{11}{8}\right)^{2}=-\frac{5}{8}+\left(-\frac{11}{8}\right)^{2}
Whakawehea te -\frac{11}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{8}. Nā, tāpiria te pūrua o te -\frac{11}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
b^{2}-\frac{11}{4}b+\frac{121}{64}=-\frac{5}{8}+\frac{121}{64}
Pūruatia -\frac{11}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
b^{2}-\frac{11}{4}b+\frac{121}{64}=\frac{81}{64}
Tāpiri -\frac{5}{8} ki te \frac{121}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(b-\frac{11}{8}\right)^{2}=\frac{81}{64}
Tauwehea b^{2}-\frac{11}{4}b+\frac{121}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{11}{8}\right)^{2}}=\sqrt{\frac{81}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
b-\frac{11}{8}=\frac{9}{8} b-\frac{11}{8}=-\frac{9}{8}
Whakarūnātia.
b=\frac{5}{2} b=\frac{1}{4}
Me tāpiri \frac{11}{8} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}