Whakaoti mō a
a=-\frac{3}{5}=-0.6
a = -\frac{3}{2} = -1\frac{1}{2} = -1.5
Tohaina
Kua tāruatia ki te papatopenga
16a^{2}+21a+9-6a^{2}=0
Tangohia te 6a^{2} mai i ngā taha e rua.
10a^{2}+21a+9=0
Pahekotia te 16a^{2} me -6a^{2}, ka 10a^{2}.
a+b=21 ab=10\times 9=90
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 10a^{2}+aa+ba+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,90 2,45 3,30 5,18 6,15 9,10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 90.
1+90=91 2+45=47 3+30=33 5+18=23 6+15=21 9+10=19
Tātaihia te tapeke mō ia takirua.
a=6 b=15
Ko te otinga te takirua ka hoatu i te tapeke 21.
\left(10a^{2}+6a\right)+\left(15a+9\right)
Tuhia anō te 10a^{2}+21a+9 hei \left(10a^{2}+6a\right)+\left(15a+9\right).
2a\left(5a+3\right)+3\left(5a+3\right)
Tauwehea te 2a i te tuatahi me te 3 i te rōpū tuarua.
\left(5a+3\right)\left(2a+3\right)
Whakatauwehea atu te kīanga pātahi 5a+3 mā te whakamahi i te āhuatanga tātai tohatoha.
a=-\frac{3}{5} a=-\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te 5a+3=0 me te 2a+3=0.
16a^{2}+21a+9-6a^{2}=0
Tangohia te 6a^{2} mai i ngā taha e rua.
10a^{2}+21a+9=0
Pahekotia te 16a^{2} me -6a^{2}, ka 10a^{2}.
a=\frac{-21±\sqrt{21^{2}-4\times 10\times 9}}{2\times 10}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 10 mō a, 21 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-21±\sqrt{441-4\times 10\times 9}}{2\times 10}
Pūrua 21.
a=\frac{-21±\sqrt{441-40\times 9}}{2\times 10}
Whakareatia -4 ki te 10.
a=\frac{-21±\sqrt{441-360}}{2\times 10}
Whakareatia -40 ki te 9.
a=\frac{-21±\sqrt{81}}{2\times 10}
Tāpiri 441 ki te -360.
a=\frac{-21±9}{2\times 10}
Tuhia te pūtakerua o te 81.
a=\frac{-21±9}{20}
Whakareatia 2 ki te 10.
a=-\frac{12}{20}
Nā, me whakaoti te whārite a=\frac{-21±9}{20} ina he tāpiri te ±. Tāpiri -21 ki te 9.
a=-\frac{3}{5}
Whakahekea te hautanga \frac{-12}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
a=-\frac{30}{20}
Nā, me whakaoti te whārite a=\frac{-21±9}{20} ina he tango te ±. Tango 9 mai i -21.
a=-\frac{3}{2}
Whakahekea te hautanga \frac{-30}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
a=-\frac{3}{5} a=-\frac{3}{2}
Kua oti te whārite te whakatau.
16a^{2}+21a+9-6a^{2}=0
Tangohia te 6a^{2} mai i ngā taha e rua.
10a^{2}+21a+9=0
Pahekotia te 16a^{2} me -6a^{2}, ka 10a^{2}.
10a^{2}+21a=-9
Tangohia te 9 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{10a^{2}+21a}{10}=-\frac{9}{10}
Whakawehea ngā taha e rua ki te 10.
a^{2}+\frac{21}{10}a=-\frac{9}{10}
Mā te whakawehe ki te 10 ka wetekia te whakareanga ki te 10.
a^{2}+\frac{21}{10}a+\left(\frac{21}{20}\right)^{2}=-\frac{9}{10}+\left(\frac{21}{20}\right)^{2}
Whakawehea te \frac{21}{10}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{21}{20}. Nā, tāpiria te pūrua o te \frac{21}{20} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+\frac{21}{10}a+\frac{441}{400}=-\frac{9}{10}+\frac{441}{400}
Pūruatia \frac{21}{20} mā te pūrua i te taurunga me te tauraro o te hautanga.
a^{2}+\frac{21}{10}a+\frac{441}{400}=\frac{81}{400}
Tāpiri -\frac{9}{10} ki te \frac{441}{400} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(a+\frac{21}{20}\right)^{2}=\frac{81}{400}
Tauwehea te a^{2}+\frac{21}{10}a+\frac{441}{400}. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{21}{20}\right)^{2}}=\sqrt{\frac{81}{400}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+\frac{21}{20}=\frac{9}{20} a+\frac{21}{20}=-\frac{9}{20}
Whakarūnātia.
a=-\frac{3}{5} a=-\frac{3}{2}
Me tango \frac{21}{20} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}