Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x^{2}=-16
Tangohia te 16 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x^{2}=\frac{-16}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}=16
Ka taea te hautanga \frac{-16}{-1} te whakamāmā ki te 16 mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
x=4 x=-4
Tuhia te pūtakerua o ngā taha e rua o te whārite.
-x^{2}+16=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 16}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 0 mō b, me 16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\times 16}}{2\left(-1\right)}
Pūrua 0.
x=\frac{0±\sqrt{4\times 16}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{0±\sqrt{64}}{2\left(-1\right)}
Whakareatia 4 ki te 16.
x=\frac{0±8}{2\left(-1\right)}
Tuhia te pūtakerua o te 64.
x=\frac{0±8}{-2}
Whakareatia 2 ki te -1.
x=-4
Nā, me whakaoti te whārite x=\frac{0±8}{-2} ina he tāpiri te ±. Whakawehe 8 ki te -2.
x=4
Nā, me whakaoti te whārite x=\frac{0±8}{-2} ina he tango te ±. Whakawehe -8 ki te -2.
x=-4 x=4
Kua oti te whārite te whakatau.