Whakaoti mō x
x=\frac{14}{15}\approx 0.933333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
16-15x+10-7=5
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 3x-2.
26-15x-7=5
Tāpirihia te 16 ki te 10, ka 26.
19-15x=5
Tangohia te 7 i te 26, ka 19.
-15x=5-19
Tangohia te 19 mai i ngā taha e rua.
-15x=-14
Tangohia te 19 i te 5, ka -14.
x=\frac{-14}{-15}
Whakawehea ngā taha e rua ki te -15.
x=\frac{14}{15}
Ka taea te hautanga \frac{-14}{-15} te whakamāmā ki te \frac{14}{15} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}