Aromātai
-\frac{138}{5}=-27.6
Tauwehe
-\frac{138}{5} = -27\frac{3}{5} = -27.6
Tohaina
Kua tāruatia ki te papatopenga
-26-0\times 0\times 5-\frac{1\times 5+3}{5}
Tangohia te 42 i te 16, ka -26.
-26-0\times 5-\frac{1\times 5+3}{5}
Whakareatia te 0 ki te 0, ka 0.
-26-0-\frac{1\times 5+3}{5}
Whakareatia te 0 ki te 5, ka 0.
-26-\frac{1\times 5+3}{5}
Tangohia te 0 i te -26, ka -26.
-26-\frac{5+3}{5}
Whakareatia te 1 ki te 5, ka 5.
-26-\frac{8}{5}
Tāpirihia te 5 ki te 3, ka 8.
-\frac{130}{5}-\frac{8}{5}
Me tahuri te -26 ki te hautau -\frac{130}{5}.
\frac{-130-8}{5}
Tā te mea he rite te tauraro o -\frac{130}{5} me \frac{8}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{138}{5}
Tangohia te 8 i te -130, ka -138.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}