Whakaoti mō x
x=5
x=11
Graph
Tohaina
Kua tāruatia ki te papatopenga
16x-64-\left(x+3\right)=\left(x+3\right)\left(x-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 16 ki te x-4.
16x-64-x-3=\left(x+3\right)\left(x-4\right)
Hei kimi i te tauaro o x+3, kimihia te tauaro o ia taurangi.
15x-64-3=\left(x+3\right)\left(x-4\right)
Pahekotia te 16x me -x, ka 15x.
15x-67=\left(x+3\right)\left(x-4\right)
Tangohia te 3 i te -64, ka -67.
15x-67=x^{2}-x-12
Whakamahia te āhuatanga tuaritanga hei whakarea te x+3 ki te x-4 ka whakakotahi i ngā kupu rite.
15x-67-x^{2}=-x-12
Tangohia te x^{2} mai i ngā taha e rua.
15x-67-x^{2}+x=-12
Me tāpiri te x ki ngā taha e rua.
16x-67-x^{2}=-12
Pahekotia te 15x me x, ka 16x.
16x-67-x^{2}+12=0
Me tāpiri te 12 ki ngā taha e rua.
16x-55-x^{2}=0
Tāpirihia te -67 ki te 12, ka -55.
-x^{2}+16x-55=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-16±\sqrt{16^{2}-4\left(-1\right)\left(-55\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 16 mō b, me -55 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-1\right)\left(-55\right)}}{2\left(-1\right)}
Pūrua 16.
x=\frac{-16±\sqrt{256+4\left(-55\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-16±\sqrt{256-220}}{2\left(-1\right)}
Whakareatia 4 ki te -55.
x=\frac{-16±\sqrt{36}}{2\left(-1\right)}
Tāpiri 256 ki te -220.
x=\frac{-16±6}{2\left(-1\right)}
Tuhia te pūtakerua o te 36.
x=\frac{-16±6}{-2}
Whakareatia 2 ki te -1.
x=-\frac{10}{-2}
Nā, me whakaoti te whārite x=\frac{-16±6}{-2} ina he tāpiri te ±. Tāpiri -16 ki te 6.
x=5
Whakawehe -10 ki te -2.
x=-\frac{22}{-2}
Nā, me whakaoti te whārite x=\frac{-16±6}{-2} ina he tango te ±. Tango 6 mai i -16.
x=11
Whakawehe -22 ki te -2.
x=5 x=11
Kua oti te whārite te whakatau.
16x-64-\left(x+3\right)=\left(x+3\right)\left(x-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 16 ki te x-4.
16x-64-x-3=\left(x+3\right)\left(x-4\right)
Hei kimi i te tauaro o x+3, kimihia te tauaro o ia taurangi.
15x-64-3=\left(x+3\right)\left(x-4\right)
Pahekotia te 16x me -x, ka 15x.
15x-67=\left(x+3\right)\left(x-4\right)
Tangohia te 3 i te -64, ka -67.
15x-67=x^{2}-x-12
Whakamahia te āhuatanga tuaritanga hei whakarea te x+3 ki te x-4 ka whakakotahi i ngā kupu rite.
15x-67-x^{2}=-x-12
Tangohia te x^{2} mai i ngā taha e rua.
15x-67-x^{2}+x=-12
Me tāpiri te x ki ngā taha e rua.
16x-67-x^{2}=-12
Pahekotia te 15x me x, ka 16x.
16x-x^{2}=-12+67
Me tāpiri te 67 ki ngā taha e rua.
16x-x^{2}=55
Tāpirihia te -12 ki te 67, ka 55.
-x^{2}+16x=55
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+16x}{-1}=\frac{55}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{16}{-1}x=\frac{55}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-16x=\frac{55}{-1}
Whakawehe 16 ki te -1.
x^{2}-16x=-55
Whakawehe 55 ki te -1.
x^{2}-16x+\left(-8\right)^{2}=-55+\left(-8\right)^{2}
Whakawehea te -16, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -8. Nā, tāpiria te pūrua o te -8 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-16x+64=-55+64
Pūrua -8.
x^{2}-16x+64=9
Tāpiri -55 ki te 64.
\left(x-8\right)^{2}=9
Tauwehea x^{2}-16x+64. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-8=3 x-8=-3
Whakarūnātia.
x=11 x=5
Me tāpiri 8 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}