Whakaoti mō a
a = \frac{9}{4} = 2\frac{1}{4} = 2.25
a = \frac{15}{4} = 3\frac{3}{4} = 3.75
Tohaina
Kua tāruatia ki te papatopenga
\frac{16\left(-a+3\right)^{2}}{16}=\frac{9}{16}
Whakawehea ngā taha e rua ki te 16.
\left(-a+3\right)^{2}=\frac{9}{16}
Mā te whakawehe ki te 16 ka wetekia te whakareanga ki te 16.
-a+3=\frac{3}{4} -a+3=-\frac{3}{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
-a+3-3=\frac{3}{4}-3 -a+3-3=-\frac{3}{4}-3
Me tango 3 mai i ngā taha e rua o te whārite.
-a=\frac{3}{4}-3 -a=-\frac{3}{4}-3
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
-a=-\frac{9}{4}
Tango 3 mai i \frac{3}{4}.
-a=-\frac{15}{4}
Tango 3 mai i -\frac{3}{4}.
\frac{-a}{-1}=-\frac{\frac{9}{4}}{-1} \frac{-a}{-1}=-\frac{\frac{15}{4}}{-1}
Whakawehea ngā taha e rua ki te -1.
a=-\frac{\frac{9}{4}}{-1} a=-\frac{\frac{15}{4}}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
a=\frac{9}{4}
Whakawehe -\frac{9}{4} ki te -1.
a=\frac{15}{4}
Whakawehe -\frac{15}{4} ki te -1.
a=\frac{9}{4} a=\frac{15}{4}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}