Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

16x^{2}+40x+25-4x^{2}=40x+100
Tangohia te 4x^{2} mai i ngā taha e rua.
12x^{2}+40x+25=40x+100
Pahekotia te 16x^{2} me -4x^{2}, ka 12x^{2}.
12x^{2}+40x+25-40x=100
Tangohia te 40x mai i ngā taha e rua.
12x^{2}+25=100
Pahekotia te 40x me -40x, ka 0.
12x^{2}+25-100=0
Tangohia te 100 mai i ngā taha e rua.
12x^{2}-75=0
Tangohia te 100 i te 25, ka -75.
4x^{2}-25=0
Whakawehea ngā taha e rua ki te 3.
\left(2x-5\right)\left(2x+5\right)=0
Whakaarohia te 4x^{2}-25. Tuhia anō te 4x^{2}-25 hei \left(2x\right)^{2}-5^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{5}{2} x=-\frac{5}{2}
Hei kimi otinga whārite, me whakaoti te 2x-5=0 me te 2x+5=0.
16x^{2}+40x+25-4x^{2}=40x+100
Tangohia te 4x^{2} mai i ngā taha e rua.
12x^{2}+40x+25=40x+100
Pahekotia te 16x^{2} me -4x^{2}, ka 12x^{2}.
12x^{2}+40x+25-40x=100
Tangohia te 40x mai i ngā taha e rua.
12x^{2}+25=100
Pahekotia te 40x me -40x, ka 0.
12x^{2}=100-25
Tangohia te 25 mai i ngā taha e rua.
12x^{2}=75
Tangohia te 25 i te 100, ka 75.
x^{2}=\frac{75}{12}
Whakawehea ngā taha e rua ki te 12.
x^{2}=\frac{25}{4}
Whakahekea te hautanga \frac{75}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x=\frac{5}{2} x=-\frac{5}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
16x^{2}+40x+25-4x^{2}=40x+100
Tangohia te 4x^{2} mai i ngā taha e rua.
12x^{2}+40x+25=40x+100
Pahekotia te 16x^{2} me -4x^{2}, ka 12x^{2}.
12x^{2}+40x+25-40x=100
Tangohia te 40x mai i ngā taha e rua.
12x^{2}+25=100
Pahekotia te 40x me -40x, ka 0.
12x^{2}+25-100=0
Tangohia te 100 mai i ngā taha e rua.
12x^{2}-75=0
Tangohia te 100 i te 25, ka -75.
x=\frac{0±\sqrt{0^{2}-4\times 12\left(-75\right)}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, 0 mō b, me -75 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 12\left(-75\right)}}{2\times 12}
Pūrua 0.
x=\frac{0±\sqrt{-48\left(-75\right)}}{2\times 12}
Whakareatia -4 ki te 12.
x=\frac{0±\sqrt{3600}}{2\times 12}
Whakareatia -48 ki te -75.
x=\frac{0±60}{2\times 12}
Tuhia te pūtakerua o te 3600.
x=\frac{0±60}{24}
Whakareatia 2 ki te 12.
x=\frac{5}{2}
Nā, me whakaoti te whārite x=\frac{0±60}{24} ina he tāpiri te ±. Whakahekea te hautanga \frac{60}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
x=-\frac{5}{2}
Nā, me whakaoti te whārite x=\frac{0±60}{24} ina he tango te ±. Whakahekea te hautanga \frac{-60}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
x=\frac{5}{2} x=-\frac{5}{2}
Kua oti te whārite te whakatau.