Whakaoti mō x
x=-60
x=50
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}+10x-3000=0
Whakawehea ngā taha e rua ki te 16.
a+b=10 ab=1\left(-3000\right)=-3000
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-3000. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,3000 -2,1500 -3,1000 -4,750 -5,600 -6,500 -8,375 -10,300 -12,250 -15,200 -20,150 -24,125 -25,120 -30,100 -40,75 -50,60
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -3000.
-1+3000=2999 -2+1500=1498 -3+1000=997 -4+750=746 -5+600=595 -6+500=494 -8+375=367 -10+300=290 -12+250=238 -15+200=185 -20+150=130 -24+125=101 -25+120=95 -30+100=70 -40+75=35 -50+60=10
Tātaihia te tapeke mō ia takirua.
a=-50 b=60
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(x^{2}-50x\right)+\left(60x-3000\right)
Tuhia anō te x^{2}+10x-3000 hei \left(x^{2}-50x\right)+\left(60x-3000\right).
x\left(x-50\right)+60\left(x-50\right)
Tauwehea te x i te tuatahi me te 60 i te rōpū tuarua.
\left(x-50\right)\left(x+60\right)
Whakatauwehea atu te kīanga pātahi x-50 mā te whakamahi i te āhuatanga tātai tohatoha.
x=50 x=-60
Hei kimi otinga whārite, me whakaoti te x-50=0 me te x+60=0.
16x^{2}+160x-48000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-160±\sqrt{160^{2}-4\times 16\left(-48000\right)}}{2\times 16}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 16 mō a, 160 mō b, me -48000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-160±\sqrt{25600-4\times 16\left(-48000\right)}}{2\times 16}
Pūrua 160.
x=\frac{-160±\sqrt{25600-64\left(-48000\right)}}{2\times 16}
Whakareatia -4 ki te 16.
x=\frac{-160±\sqrt{25600+3072000}}{2\times 16}
Whakareatia -64 ki te -48000.
x=\frac{-160±\sqrt{3097600}}{2\times 16}
Tāpiri 25600 ki te 3072000.
x=\frac{-160±1760}{2\times 16}
Tuhia te pūtakerua o te 3097600.
x=\frac{-160±1760}{32}
Whakareatia 2 ki te 16.
x=\frac{1600}{32}
Nā, me whakaoti te whārite x=\frac{-160±1760}{32} ina he tāpiri te ±. Tāpiri -160 ki te 1760.
x=50
Whakawehe 1600 ki te 32.
x=-\frac{1920}{32}
Nā, me whakaoti te whārite x=\frac{-160±1760}{32} ina he tango te ±. Tango 1760 mai i -160.
x=-60
Whakawehe -1920 ki te 32.
x=50 x=-60
Kua oti te whārite te whakatau.
16x^{2}+160x-48000=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
16x^{2}+160x-48000-\left(-48000\right)=-\left(-48000\right)
Me tāpiri 48000 ki ngā taha e rua o te whārite.
16x^{2}+160x=-\left(-48000\right)
Mā te tango i te -48000 i a ia ake anō ka toe ko te 0.
16x^{2}+160x=48000
Tango -48000 mai i 0.
\frac{16x^{2}+160x}{16}=\frac{48000}{16}
Whakawehea ngā taha e rua ki te 16.
x^{2}+\frac{160}{16}x=\frac{48000}{16}
Mā te whakawehe ki te 16 ka wetekia te whakareanga ki te 16.
x^{2}+10x=\frac{48000}{16}
Whakawehe 160 ki te 16.
x^{2}+10x=3000
Whakawehe 48000 ki te 16.
x^{2}+10x+5^{2}=3000+5^{2}
Whakawehea te 10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 5. Nā, tāpiria te pūrua o te 5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+10x+25=3000+25
Pūrua 5.
x^{2}+10x+25=3025
Tāpiri 3000 ki te 25.
\left(x+5\right)^{2}=3025
Tauwehea x^{2}+10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{3025}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+5=55 x+5=-55
Whakarūnātia.
x=50 x=-60
Me tango 5 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}