Whakaoti mō x
x=-58
x=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
1936=\left(80+x\right)\left(30-x\right)
Whakareatia te 16 ki te 121, ka 1936.
1936=2400-50x-x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 80+x ki te 30-x ka whakakotahi i ngā kupu rite.
2400-50x-x^{2}=1936
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2400-50x-x^{2}-1936=0
Tangohia te 1936 mai i ngā taha e rua.
464-50x-x^{2}=0
Tangohia te 1936 i te 2400, ka 464.
-x^{2}-50x+464=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\left(-1\right)\times 464}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -50 mō b, me 464 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-50\right)±\sqrt{2500-4\left(-1\right)\times 464}}{2\left(-1\right)}
Pūrua -50.
x=\frac{-\left(-50\right)±\sqrt{2500+4\times 464}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-50\right)±\sqrt{2500+1856}}{2\left(-1\right)}
Whakareatia 4 ki te 464.
x=\frac{-\left(-50\right)±\sqrt{4356}}{2\left(-1\right)}
Tāpiri 2500 ki te 1856.
x=\frac{-\left(-50\right)±66}{2\left(-1\right)}
Tuhia te pūtakerua o te 4356.
x=\frac{50±66}{2\left(-1\right)}
Ko te tauaro o -50 ko 50.
x=\frac{50±66}{-2}
Whakareatia 2 ki te -1.
x=\frac{116}{-2}
Nā, me whakaoti te whārite x=\frac{50±66}{-2} ina he tāpiri te ±. Tāpiri 50 ki te 66.
x=-58
Whakawehe 116 ki te -2.
x=-\frac{16}{-2}
Nā, me whakaoti te whārite x=\frac{50±66}{-2} ina he tango te ±. Tango 66 mai i 50.
x=8
Whakawehe -16 ki te -2.
x=-58 x=8
Kua oti te whārite te whakatau.
1936=\left(80+x\right)\left(30-x\right)
Whakareatia te 16 ki te 121, ka 1936.
1936=2400-50x-x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 80+x ki te 30-x ka whakakotahi i ngā kupu rite.
2400-50x-x^{2}=1936
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-50x-x^{2}=1936-2400
Tangohia te 2400 mai i ngā taha e rua.
-50x-x^{2}=-464
Tangohia te 2400 i te 1936, ka -464.
-x^{2}-50x=-464
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}-50x}{-1}=-\frac{464}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{50}{-1}\right)x=-\frac{464}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+50x=-\frac{464}{-1}
Whakawehe -50 ki te -1.
x^{2}+50x=464
Whakawehe -464 ki te -1.
x^{2}+50x+25^{2}=464+25^{2}
Whakawehea te 50, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 25. Nā, tāpiria te pūrua o te 25 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+50x+625=464+625
Pūrua 25.
x^{2}+50x+625=1089
Tāpiri 464 ki te 625.
\left(x+25\right)^{2}=1089
Tauwehea x^{2}+50x+625. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+25\right)^{2}}=\sqrt{1089}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+25=33 x+25=-33
Whakarūnātia.
x=8 x=-58
Me tango 25 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}