16 \% \times 250 - 35 \% \times 210 - 132 \% \times 1250 \times \frac { 2 } { 3 }
Aromātai
-\frac{2267}{2}=-1133.5
Tauwehe
-\frac{2267}{2} = -1133\frac{1}{2} = -1133.5
Pātaitai
Arithmetic
16 \% \times 250 - 35 \% \times 210 - 132 \% \times 1250 \times \frac { 2 } { 3 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{4}{25}\times 250-\frac{35}{100}\times 210-\frac{132}{100}\times 1250\times \frac{2}{3}
Whakahekea te hautanga \frac{16}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{4\times 250}{25}-\frac{35}{100}\times 210-\frac{132}{100}\times 1250\times \frac{2}{3}
Tuhia te \frac{4}{25}\times 250 hei hautanga kotahi.
\frac{1000}{25}-\frac{35}{100}\times 210-\frac{132}{100}\times 1250\times \frac{2}{3}
Whakareatia te 4 ki te 250, ka 1000.
40-\frac{35}{100}\times 210-\frac{132}{100}\times 1250\times \frac{2}{3}
Whakawehea te 1000 ki te 25, kia riro ko 40.
40-\frac{7}{20}\times 210-\frac{132}{100}\times 1250\times \frac{2}{3}
Whakahekea te hautanga \frac{35}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
40-\frac{7\times 210}{20}-\frac{132}{100}\times 1250\times \frac{2}{3}
Tuhia te \frac{7}{20}\times 210 hei hautanga kotahi.
40-\frac{1470}{20}-\frac{132}{100}\times 1250\times \frac{2}{3}
Whakareatia te 7 ki te 210, ka 1470.
40-\frac{147}{2}-\frac{132}{100}\times 1250\times \frac{2}{3}
Whakahekea te hautanga \frac{1470}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
\frac{80}{2}-\frac{147}{2}-\frac{132}{100}\times 1250\times \frac{2}{3}
Me tahuri te 40 ki te hautau \frac{80}{2}.
\frac{80-147}{2}-\frac{132}{100}\times 1250\times \frac{2}{3}
Tā te mea he rite te tauraro o \frac{80}{2} me \frac{147}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{67}{2}-\frac{132}{100}\times 1250\times \frac{2}{3}
Tangohia te 147 i te 80, ka -67.
-\frac{67}{2}-\frac{33}{25}\times 1250\times \frac{2}{3}
Whakahekea te hautanga \frac{132}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
-\frac{67}{2}-\frac{33\times 1250}{25}\times \frac{2}{3}
Tuhia te \frac{33}{25}\times 1250 hei hautanga kotahi.
-\frac{67}{2}-\frac{41250}{25}\times \frac{2}{3}
Whakareatia te 33 ki te 1250, ka 41250.
-\frac{67}{2}-1650\times \frac{2}{3}
Whakawehea te 41250 ki te 25, kia riro ko 1650.
-\frac{67}{2}-\frac{1650\times 2}{3}
Tuhia te 1650\times \frac{2}{3} hei hautanga kotahi.
-\frac{67}{2}-\frac{3300}{3}
Whakareatia te 1650 ki te 2, ka 3300.
-\frac{67}{2}-1100
Whakawehea te 3300 ki te 3, kia riro ko 1100.
-\frac{67}{2}-\frac{2200}{2}
Me tahuri te 1100 ki te hautau \frac{2200}{2}.
\frac{-67-2200}{2}
Tā te mea he rite te tauraro o -\frac{67}{2} me \frac{2200}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{2267}{2}
Tangohia te 2200 i te -67, ka -2267.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}