Whakaoti mō x
x<-\frac{24}{5}
Graph
Tohaina
Kua tāruatia ki te papatopenga
16\left(-\frac{3}{10}\right)>x
Me whakarea ngā taha e rua ki te -\frac{3}{10}, te tau utu o -\frac{10}{3}. I te mea he tōraro a -\frac{10}{3}, ka huri te ahunga koreōrite.
\frac{16\left(-3\right)}{10}>x
Tuhia te 16\left(-\frac{3}{10}\right) hei hautanga kotahi.
\frac{-48}{10}>x
Whakareatia te 16 ki te -3, ka -48.
-\frac{24}{5}>x
Whakahekea te hautanga \frac{-48}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x<-\frac{24}{5}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa. Ka huri tēnei i te aronga o te tohu.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}