Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9\times 16=xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 9x, arā, te tauraro pātahi he tino iti rawa te kitea o x,9.
9\times 16=x^{2}
Whakareatia te x ki te x, ka x^{2}.
144=x^{2}
Whakareatia te 9 ki te 16, ka 144.
x^{2}=144
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=12 x=-12
Tuhia te pūtakerua o ngā taha e rua o te whārite.
9\times 16=xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 9x, arā, te tauraro pātahi he tino iti rawa te kitea o x,9.
9\times 16=x^{2}
Whakareatia te x ki te x, ka x^{2}.
144=x^{2}
Whakareatia te 9 ki te 16, ka 144.
x^{2}=144
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-144=0
Tangohia te 144 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-144\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -144 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-144\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{576}}{2}
Whakareatia -4 ki te -144.
x=\frac{0±24}{2}
Tuhia te pūtakerua o te 576.
x=12
Nā, me whakaoti te whārite x=\frac{0±24}{2} ina he tāpiri te ±. Whakawehe 24 ki te 2.
x=-12
Nā, me whakaoti te whārite x=\frac{0±24}{2} ina he tango te ±. Whakawehe -24 ki te 2.
x=12 x=-12
Kua oti te whārite te whakatau.