Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki h
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{16}{2}h}{20\times 30}
Tuhia te \frac{\frac{\frac{16}{2}h}{20}}{30} hei hautanga kotahi.
\frac{8h}{20\times 30}
Whakawehea te 16 ki te 2, kia riro ko 8.
\frac{8h}{600}
Whakareatia te 20 ki te 30, ka 600.
\frac{1}{75}h
Whakawehea te 8h ki te 600, kia riro ko \frac{1}{75}h.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{16}{2}h}{20\times 30})
Tuhia te \frac{\frac{\frac{16}{2}h}{20}}{30} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{8h}{20\times 30})
Whakawehea te 16 ki te 2, kia riro ko 8.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{8h}{600})
Whakareatia te 20 ki te 30, ka 600.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{75}h)
Whakawehea te 8h ki te 600, kia riro ko \frac{1}{75}h.
\frac{1}{75}h^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{1}{75}h^{0}
Tango 1 mai i 1.
\frac{1}{75}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{1}{75}
Mō tētahi kupu t, t\times 1=t me 1t=t.