Aromātai
\frac{h}{75}
Kimi Pārōnaki e ai ki h
\frac{1}{75} = 0.013333333333333334
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{16}{2}h}{20\times 30}
Tuhia te \frac{\frac{\frac{16}{2}h}{20}}{30} hei hautanga kotahi.
\frac{8h}{20\times 30}
Whakawehea te 16 ki te 2, kia riro ko 8.
\frac{8h}{600}
Whakareatia te 20 ki te 30, ka 600.
\frac{1}{75}h
Whakawehea te 8h ki te 600, kia riro ko \frac{1}{75}h.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{\frac{16}{2}h}{20\times 30})
Tuhia te \frac{\frac{\frac{16}{2}h}{20}}{30} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{8h}{20\times 30})
Whakawehea te 16 ki te 2, kia riro ko 8.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{8h}{600})
Whakareatia te 20 ki te 30, ka 600.
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{75}h)
Whakawehea te 8h ki te 600, kia riro ko \frac{1}{75}h.
\frac{1}{75}h^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
\frac{1}{75}h^{0}
Tango 1 mai i 1.
\frac{1}{75}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{1}{75}
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}