Whakaoti mō x
x=-8
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\times 16+xx=-64
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x\times 16+x^{2}=-64
Whakareatia te x ki te x, ka x^{2}.
x\times 16+x^{2}+64=0
Me tāpiri te 64 ki ngā taha e rua.
x^{2}+16x+64=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-16±\sqrt{16^{2}-4\times 64}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 16 mō b, me 64 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 64}}{2}
Pūrua 16.
x=\frac{-16±\sqrt{256-256}}{2}
Whakareatia -4 ki te 64.
x=\frac{-16±\sqrt{0}}{2}
Tāpiri 256 ki te -256.
x=-\frac{16}{2}
Tuhia te pūtakerua o te 0.
x=-8
Whakawehe -16 ki te 2.
x\times 16+xx=-64
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x\times 16+x^{2}=-64
Whakareatia te x ki te x, ka x^{2}.
x^{2}+16x=-64
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+16x+8^{2}=-64+8^{2}
Whakawehea te 16, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 8. Nā, tāpiria te pūrua o te 8 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+16x+64=-64+64
Pūrua 8.
x^{2}+16x+64=0
Tāpiri -64 ki te 64.
\left(x+8\right)^{2}=0
Tauwehea x^{2}+16x+64. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+8\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+8=0 x+8=0
Whakarūnātia.
x=-8 x=-8
Me tango 8 mai i ngā taha e rua o te whārite.
x=-8
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}