Whakaoti mō a
a<1
Tohaina
Kua tāruatia ki te papatopenga
16-3a>7a+6
Pahekotia te a me -4a, ka -3a.
16-3a-7a>6
Tangohia te 7a mai i ngā taha e rua.
16-10a>6
Pahekotia te -3a me -7a, ka -10a.
-10a>6-16
Tangohia te 16 mai i ngā taha e rua.
-10a>-10
Tangohia te 16 i te 6, ka -10.
a<\frac{-10}{-10}
Whakawehea ngā taha e rua ki te -10. I te mea he tōraro a -10, ka huri te ahunga koreōrite.
a<1
Whakawehea te -10 ki te -10, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}