Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(5c-3c^{2}\right)
Tauwehea te 3.
c\left(5-3c\right)
Whakaarohia te 5c-3c^{2}. Tauwehea te c.
3c\left(-3c+5\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-9c^{2}+15c=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
c=\frac{-15±\sqrt{15^{2}}}{2\left(-9\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
c=\frac{-15±15}{2\left(-9\right)}
Tuhia te pūtakerua o te 15^{2}.
c=\frac{-15±15}{-18}
Whakareatia 2 ki te -9.
c=\frac{0}{-18}
Nā, me whakaoti te whārite c=\frac{-15±15}{-18} ina he tāpiri te ±. Tāpiri -15 ki te 15.
c=0
Whakawehe 0 ki te -18.
c=-\frac{30}{-18}
Nā, me whakaoti te whārite c=\frac{-15±15}{-18} ina he tango te ±. Tango 15 mai i -15.
c=\frac{5}{3}
Whakahekea te hautanga \frac{-30}{-18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
-9c^{2}+15c=-9c\left(c-\frac{5}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 0 mō te x_{1} me te \frac{5}{3} mō te x_{2}.
-9c^{2}+15c=-9c\times \frac{-3c+5}{-3}
Tango \frac{5}{3} mai i c mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-9c^{2}+15c=3c\left(-3c+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te -9 me te -3.