Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=\frac{100}{15625}
Whakawehea ngā taha e rua ki te 15625.
x^{2}=\frac{4}{625}
Whakahekea te hautanga \frac{100}{15625} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
x^{2}-\frac{4}{625}=0
Tangohia te \frac{4}{625} mai i ngā taha e rua.
625x^{2}-4=0
Me whakarea ngā taha e rua ki te 625.
\left(25x-2\right)\left(25x+2\right)=0
Whakaarohia te 625x^{2}-4. Tuhia anō te 625x^{2}-4 hei \left(25x\right)^{2}-2^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{2}{25} x=-\frac{2}{25}
Hei kimi otinga whārite, me whakaoti te 25x-2=0 me te 25x+2=0.
x^{2}=\frac{100}{15625}
Whakawehea ngā taha e rua ki te 15625.
x^{2}=\frac{4}{625}
Whakahekea te hautanga \frac{100}{15625} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
x=\frac{2}{25} x=-\frac{2}{25}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x^{2}=\frac{100}{15625}
Whakawehea ngā taha e rua ki te 15625.
x^{2}=\frac{4}{625}
Whakahekea te hautanga \frac{100}{15625} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
x^{2}-\frac{4}{625}=0
Tangohia te \frac{4}{625} mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{4}{625}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{4}{625} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{4}{625}\right)}}{2}
Pūrua 0.
x=\frac{0±\sqrt{\frac{16}{625}}}{2}
Whakareatia -4 ki te -\frac{4}{625}.
x=\frac{0±\frac{4}{25}}{2}
Tuhia te pūtakerua o te \frac{16}{625}.
x=\frac{2}{25}
Nā, me whakaoti te whārite x=\frac{0±\frac{4}{25}}{2} ina he tāpiri te ±.
x=-\frac{2}{25}
Nā, me whakaoti te whārite x=\frac{0±\frac{4}{25}}{2} ina he tango te ±.
x=\frac{2}{25} x=-\frac{2}{25}
Kua oti te whārite te whakatau.