Whakaoti mō x
x=\frac{\sqrt{3197}+1}{102}\approx 0.564137449
x=\frac{1-\sqrt{3197}}{102}\approx -0.544529606
Graph
Tohaina
Kua tāruatia ki te papatopenga
1530x^{2}-30x-470=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 1530\left(-470\right)}}{2\times 1530}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1530 mō a, -30 mō b, me -470 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 1530\left(-470\right)}}{2\times 1530}
Pūrua -30.
x=\frac{-\left(-30\right)±\sqrt{900-6120\left(-470\right)}}{2\times 1530}
Whakareatia -4 ki te 1530.
x=\frac{-\left(-30\right)±\sqrt{900+2876400}}{2\times 1530}
Whakareatia -6120 ki te -470.
x=\frac{-\left(-30\right)±\sqrt{2877300}}{2\times 1530}
Tāpiri 900 ki te 2876400.
x=\frac{-\left(-30\right)±30\sqrt{3197}}{2\times 1530}
Tuhia te pūtakerua o te 2877300.
x=\frac{30±30\sqrt{3197}}{2\times 1530}
Ko te tauaro o -30 ko 30.
x=\frac{30±30\sqrt{3197}}{3060}
Whakareatia 2 ki te 1530.
x=\frac{30\sqrt{3197}+30}{3060}
Nā, me whakaoti te whārite x=\frac{30±30\sqrt{3197}}{3060} ina he tāpiri te ±. Tāpiri 30 ki te 30\sqrt{3197}.
x=\frac{\sqrt{3197}+1}{102}
Whakawehe 30+30\sqrt{3197} ki te 3060.
x=\frac{30-30\sqrt{3197}}{3060}
Nā, me whakaoti te whārite x=\frac{30±30\sqrt{3197}}{3060} ina he tango te ±. Tango 30\sqrt{3197} mai i 30.
x=\frac{1-\sqrt{3197}}{102}
Whakawehe 30-30\sqrt{3197} ki te 3060.
x=\frac{\sqrt{3197}+1}{102} x=\frac{1-\sqrt{3197}}{102}
Kua oti te whārite te whakatau.
1530x^{2}-30x-470=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
1530x^{2}-30x-470-\left(-470\right)=-\left(-470\right)
Me tāpiri 470 ki ngā taha e rua o te whārite.
1530x^{2}-30x=-\left(-470\right)
Mā te tango i te -470 i a ia ake anō ka toe ko te 0.
1530x^{2}-30x=470
Tango -470 mai i 0.
\frac{1530x^{2}-30x}{1530}=\frac{470}{1530}
Whakawehea ngā taha e rua ki te 1530.
x^{2}+\left(-\frac{30}{1530}\right)x=\frac{470}{1530}
Mā te whakawehe ki te 1530 ka wetekia te whakareanga ki te 1530.
x^{2}-\frac{1}{51}x=\frac{470}{1530}
Whakahekea te hautanga \frac{-30}{1530} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 30.
x^{2}-\frac{1}{51}x=\frac{47}{153}
Whakahekea te hautanga \frac{470}{1530} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x^{2}-\frac{1}{51}x+\left(-\frac{1}{102}\right)^{2}=\frac{47}{153}+\left(-\frac{1}{102}\right)^{2}
Whakawehea te -\frac{1}{51}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{102}. Nā, tāpiria te pūrua o te -\frac{1}{102} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{51}x+\frac{1}{10404}=\frac{47}{153}+\frac{1}{10404}
Pūruatia -\frac{1}{102} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{51}x+\frac{1}{10404}=\frac{3197}{10404}
Tāpiri \frac{47}{153} ki te \frac{1}{10404} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{102}\right)^{2}=\frac{3197}{10404}
Tauwehea x^{2}-\frac{1}{51}x+\frac{1}{10404}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{102}\right)^{2}}=\sqrt{\frac{3197}{10404}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{102}=\frac{\sqrt{3197}}{102} x-\frac{1}{102}=-\frac{\sqrt{3197}}{102}
Whakarūnātia.
x=\frac{\sqrt{3197}+1}{102} x=\frac{1-\sqrt{3197}}{102}
Me tāpiri \frac{1}{102} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}