Whakaoti mō x
x=50
x=100
Graph
Tohaina
Kua tāruatia ki te papatopenga
150x-x^{2}=\left(1-0\right)\times 100\times 50
Whakareatia te 0 ki te 8832, ka 0.
150x-x^{2}=1\times 100\times 50
Tangohia te 0 i te 1, ka 1.
150x-x^{2}=100\times 50
Whakareatia te 1 ki te 100, ka 100.
150x-x^{2}=5000
Whakareatia te 100 ki te 50, ka 5000.
150x-x^{2}-5000=0
Tangohia te 5000 mai i ngā taha e rua.
-x^{2}+150x-5000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-150±\sqrt{150^{2}-4\left(-1\right)\left(-5000\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 150 mō b, me -5000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-150±\sqrt{22500-4\left(-1\right)\left(-5000\right)}}{2\left(-1\right)}
Pūrua 150.
x=\frac{-150±\sqrt{22500+4\left(-5000\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-150±\sqrt{22500-20000}}{2\left(-1\right)}
Whakareatia 4 ki te -5000.
x=\frac{-150±\sqrt{2500}}{2\left(-1\right)}
Tāpiri 22500 ki te -20000.
x=\frac{-150±50}{2\left(-1\right)}
Tuhia te pūtakerua o te 2500.
x=\frac{-150±50}{-2}
Whakareatia 2 ki te -1.
x=-\frac{100}{-2}
Nā, me whakaoti te whārite x=\frac{-150±50}{-2} ina he tāpiri te ±. Tāpiri -150 ki te 50.
x=50
Whakawehe -100 ki te -2.
x=-\frac{200}{-2}
Nā, me whakaoti te whārite x=\frac{-150±50}{-2} ina he tango te ±. Tango 50 mai i -150.
x=100
Whakawehe -200 ki te -2.
x=50 x=100
Kua oti te whārite te whakatau.
150x-x^{2}=\left(1-0\right)\times 100\times 50
Whakareatia te 0 ki te 8832, ka 0.
150x-x^{2}=1\times 100\times 50
Tangohia te 0 i te 1, ka 1.
150x-x^{2}=100\times 50
Whakareatia te 1 ki te 100, ka 100.
150x-x^{2}=5000
Whakareatia te 100 ki te 50, ka 5000.
-x^{2}+150x=5000
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+150x}{-1}=\frac{5000}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{150}{-1}x=\frac{5000}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-150x=\frac{5000}{-1}
Whakawehe 150 ki te -1.
x^{2}-150x=-5000
Whakawehe 5000 ki te -1.
x^{2}-150x+\left(-75\right)^{2}=-5000+\left(-75\right)^{2}
Whakawehea te -150, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -75. Nā, tāpiria te pūrua o te -75 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-150x+5625=-5000+5625
Pūrua -75.
x^{2}-150x+5625=625
Tāpiri -5000 ki te 5625.
\left(x-75\right)^{2}=625
Tauwehea x^{2}-150x+5625. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-75\right)^{2}}=\sqrt{625}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-75=25 x-75=-25
Whakarūnātia.
x=100 x=50
Me tāpiri 75 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}