Whakaoti mō x
x=\frac{\sqrt{6}}{2}-1\approx 0.224744871
x=-\frac{\sqrt{6}}{2}-1\approx -2.224744871
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{15000}{10000}=\left(1+x\right)^{2}
Whakawehea ngā taha e rua ki te 10000.
\frac{3}{2}=\left(1+x\right)^{2}
Whakahekea te hautanga \frac{15000}{10000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5000.
\frac{3}{2}=1+2x+x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+x\right)^{2}.
1+2x+x^{2}=\frac{3}{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1+2x+x^{2}-\frac{3}{2}=0
Tangohia te \frac{3}{2} mai i ngā taha e rua.
-\frac{1}{2}+2x+x^{2}=0
Tangohia te \frac{3}{2} i te 1, ka -\frac{1}{2}.
x^{2}+2x-\frac{1}{2}=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2±\sqrt{2^{2}-4\left(-\frac{1}{2}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me -\frac{1}{2} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-\frac{1}{2}\right)}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4+2}}{2}
Whakareatia -4 ki te -\frac{1}{2}.
x=\frac{-2±\sqrt{6}}{2}
Tāpiri 4 ki te 2.
x=\frac{\sqrt{6}-2}{2}
Nā, me whakaoti te whārite x=\frac{-2±\sqrt{6}}{2} ina he tāpiri te ±. Tāpiri -2 ki te \sqrt{6}.
x=\frac{\sqrt{6}}{2}-1
Whakawehe -2+\sqrt{6} ki te 2.
x=\frac{-\sqrt{6}-2}{2}
Nā, me whakaoti te whārite x=\frac{-2±\sqrt{6}}{2} ina he tango te ±. Tango \sqrt{6} mai i -2.
x=-\frac{\sqrt{6}}{2}-1
Whakawehe -2-\sqrt{6} ki te 2.
x=\frac{\sqrt{6}}{2}-1 x=-\frac{\sqrt{6}}{2}-1
Kua oti te whārite te whakatau.
\frac{15000}{10000}=\left(1+x\right)^{2}
Whakawehea ngā taha e rua ki te 10000.
\frac{3}{2}=\left(1+x\right)^{2}
Whakahekea te hautanga \frac{15000}{10000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5000.
\frac{3}{2}=1+2x+x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(1+x\right)^{2}.
1+2x+x^{2}=\frac{3}{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x+x^{2}=\frac{3}{2}-1
Tangohia te 1 mai i ngā taha e rua.
2x+x^{2}=\frac{1}{2}
Tangohia te 1 i te \frac{3}{2}, ka \frac{1}{2}.
x^{2}+2x=\frac{1}{2}
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
x^{2}+2x+1^{2}=\frac{1}{2}+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=\frac{1}{2}+1
Pūrua 1.
x^{2}+2x+1=\frac{3}{2}
Tāpiri \frac{1}{2} ki te 1.
\left(x+1\right)^{2}=\frac{3}{2}
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{3}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\frac{\sqrt{6}}{2} x+1=-\frac{\sqrt{6}}{2}
Whakarūnātia.
x=\frac{\sqrt{6}}{2}-1 x=-\frac{\sqrt{6}}{2}-1
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}