Whakaoti mō x
x=40
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{150\times 2}{5}+x=2\left(150\times \frac{3}{5}-x\right)
Tuhia te 150\times \frac{2}{5} hei hautanga kotahi.
\frac{300}{5}+x=2\left(150\times \frac{3}{5}-x\right)
Whakareatia te 150 ki te 2, ka 300.
60+x=2\left(150\times \frac{3}{5}-x\right)
Whakawehea te 300 ki te 5, kia riro ko 60.
60+x=2\left(\frac{150\times 3}{5}-x\right)
Tuhia te 150\times \frac{3}{5} hei hautanga kotahi.
60+x=2\left(\frac{450}{5}-x\right)
Whakareatia te 150 ki te 3, ka 450.
60+x=2\left(90-x\right)
Whakawehea te 450 ki te 5, kia riro ko 90.
60+x=180-2x
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 90-x.
60+x+2x=180
Me tāpiri te 2x ki ngā taha e rua.
60+3x=180
Pahekotia te x me 2x, ka 3x.
3x=180-60
Tangohia te 60 mai i ngā taha e rua.
3x=120
Tangohia te 60 i te 180, ka 120.
x=\frac{120}{3}
Whakawehea ngā taha e rua ki te 3.
x=40
Whakawehea te 120 ki te 3, kia riro ko 40.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}