Whakaoti mō x
x = \frac{20 \sqrt{206} + 50}{51} \approx 6.608901998
x=\frac{50-20\sqrt{206}}{51}\approx -4.648117684
Graph
Tohaina
Kua tāruatia ki te papatopenga
15.3x^{2}-30x-470=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 15.3\left(-470\right)}}{2\times 15.3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 15.3 mō a, -30 mō b, me -470 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 15.3\left(-470\right)}}{2\times 15.3}
Pūrua -30.
x=\frac{-\left(-30\right)±\sqrt{900-61.2\left(-470\right)}}{2\times 15.3}
Whakareatia -4 ki te 15.3.
x=\frac{-\left(-30\right)±\sqrt{900+28764}}{2\times 15.3}
Whakareatia -61.2 ki te -470.
x=\frac{-\left(-30\right)±\sqrt{29664}}{2\times 15.3}
Tāpiri 900 ki te 28764.
x=\frac{-\left(-30\right)±12\sqrt{206}}{2\times 15.3}
Tuhia te pūtakerua o te 29664.
x=\frac{30±12\sqrt{206}}{2\times 15.3}
Ko te tauaro o -30 ko 30.
x=\frac{30±12\sqrt{206}}{30.6}
Whakareatia 2 ki te 15.3.
x=\frac{12\sqrt{206}+30}{30.6}
Nā, me whakaoti te whārite x=\frac{30±12\sqrt{206}}{30.6} ina he tāpiri te ±. Tāpiri 30 ki te 12\sqrt{206}.
x=\frac{20\sqrt{206}+50}{51}
Whakawehe 30+12\sqrt{206} ki te 30.6 mā te whakarea 30+12\sqrt{206} ki te tau huripoki o 30.6.
x=\frac{30-12\sqrt{206}}{30.6}
Nā, me whakaoti te whārite x=\frac{30±12\sqrt{206}}{30.6} ina he tango te ±. Tango 12\sqrt{206} mai i 30.
x=\frac{50-20\sqrt{206}}{51}
Whakawehe 30-12\sqrt{206} ki te 30.6 mā te whakarea 30-12\sqrt{206} ki te tau huripoki o 30.6.
x=\frac{20\sqrt{206}+50}{51} x=\frac{50-20\sqrt{206}}{51}
Kua oti te whārite te whakatau.
15.3x^{2}-30x-470=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
15.3x^{2}-30x-470-\left(-470\right)=-\left(-470\right)
Me tāpiri 470 ki ngā taha e rua o te whārite.
15.3x^{2}-30x=-\left(-470\right)
Mā te tango i te -470 i a ia ake anō ka toe ko te 0.
15.3x^{2}-30x=470
Tango -470 mai i 0.
\frac{15.3x^{2}-30x}{15.3}=\frac{470}{15.3}
Whakawehea ngā taha e rua o te whārite ki te 15.3, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\left(-\frac{30}{15.3}\right)x=\frac{470}{15.3}
Mā te whakawehe ki te 15.3 ka wetekia te whakareanga ki te 15.3.
x^{2}-\frac{100}{51}x=\frac{470}{15.3}
Whakawehe -30 ki te 15.3 mā te whakarea -30 ki te tau huripoki o 15.3.
x^{2}-\frac{100}{51}x=\frac{4700}{153}
Whakawehe 470 ki te 15.3 mā te whakarea 470 ki te tau huripoki o 15.3.
x^{2}-\frac{100}{51}x+\left(-\frac{50}{51}\right)^{2}=\frac{4700}{153}+\left(-\frac{50}{51}\right)^{2}
Whakawehea te -\frac{100}{51}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{50}{51}. Nā, tāpiria te pūrua o te -\frac{50}{51} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{100}{51}x+\frac{2500}{2601}=\frac{4700}{153}+\frac{2500}{2601}
Pūruatia -\frac{50}{51} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{100}{51}x+\frac{2500}{2601}=\frac{82400}{2601}
Tāpiri \frac{4700}{153} ki te \frac{2500}{2601} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{50}{51}\right)^{2}=\frac{82400}{2601}
Tauwehea x^{2}-\frac{100}{51}x+\frac{2500}{2601}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{50}{51}\right)^{2}}=\sqrt{\frac{82400}{2601}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{50}{51}=\frac{20\sqrt{206}}{51} x-\frac{50}{51}=-\frac{20\sqrt{206}}{51}
Whakarūnātia.
x=\frac{20\sqrt{206}+50}{51} x=\frac{50-20\sqrt{206}}{51}
Me tāpiri \frac{50}{51} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}