Aromātai
5.65
Tauwehe
\frac{113}{5 \cdot 2 ^ {2}} = 5\frac{13}{20} = 5.65
Tohaina
Kua tāruatia ki te papatopenga
\frac{153}{30}-\frac{1}{4}\left(19.6-6.8\right)+0.5\times 7.5
Whakarohaina te \frac{15.3}{3} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{51}{10}-\frac{1}{4}\left(19.6-6.8\right)+0.5\times 7.5
Whakahekea te hautanga \frac{153}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{51}{10}-\frac{1}{4}\times 12.8+0.5\times 7.5
Tangohia te 6.8 i te 19.6, ka 12.8.
\frac{51}{10}-\frac{1}{4}\times \frac{64}{5}+0.5\times 7.5
Me tahuri ki tau ā-ira 12.8 ki te hautau \frac{128}{10}. Whakahekea te hautanga \frac{128}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{51}{10}-\frac{1\times 64}{4\times 5}+0.5\times 7.5
Me whakarea te \frac{1}{4} ki te \frac{64}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{51}{10}-\frac{64}{20}+0.5\times 7.5
Mahia ngā whakarea i roto i te hautanga \frac{1\times 64}{4\times 5}.
\frac{51}{10}-\frac{16}{5}+0.5\times 7.5
Whakahekea te hautanga \frac{64}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{51}{10}-\frac{32}{10}+0.5\times 7.5
Ko te maha noa iti rawa atu o 10 me 5 ko 10. Me tahuri \frac{51}{10} me \frac{16}{5} ki te hautau me te tautūnga 10.
\frac{51-32}{10}+0.5\times 7.5
Tā te mea he rite te tauraro o \frac{51}{10} me \frac{32}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{19}{10}+0.5\times 7.5
Tangohia te 32 i te 51, ka 19.
\frac{19}{10}+3.75
Whakareatia te 0.5 ki te 7.5, ka 3.75.
\frac{19}{10}+\frac{15}{4}
Me tahuri ki tau ā-ira 3.75 ki te hautau \frac{375}{100}. Whakahekea te hautanga \frac{375}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{38}{20}+\frac{75}{20}
Ko te maha noa iti rawa atu o 10 me 4 ko 20. Me tahuri \frac{19}{10} me \frac{15}{4} ki te hautau me te tautūnga 20.
\frac{38+75}{20}
Tā te mea he rite te tauraro o \frac{38}{20} me \frac{75}{20}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{113}{20}
Tāpirihia te 38 ki te 75, ka 113.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}