Whakaoti mō x
x = \frac{271}{30} = 9\frac{1}{30} \approx 9.033333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\times 15.1+x\times 12=3xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x\times 15.1+x\times 12=3x^{2}
Whakareatia te x ki te x, ka x^{2}.
27.1x=3x^{2}
Pahekotia te x\times 15.1 me x\times 12, ka 27.1x.
27.1x-3x^{2}=0
Tangohia te 3x^{2} mai i ngā taha e rua.
x\left(27.1-3x\right)=0
Tauwehea te x.
x=0 x=\frac{271}{30}
Hei kimi otinga whārite, me whakaoti te x=0 me te 27.1-3x=0.
x=\frac{271}{30}
Tē taea kia ōrite te tāupe x ki 0.
x\times 15.1+x\times 12=3xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x\times 15.1+x\times 12=3x^{2}
Whakareatia te x ki te x, ka x^{2}.
27.1x=3x^{2}
Pahekotia te x\times 15.1 me x\times 12, ka 27.1x.
27.1x-3x^{2}=0
Tangohia te 3x^{2} mai i ngā taha e rua.
-3x^{2}+27.1x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-27.1±\sqrt{27.1^{2}}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, 27.1 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-27.1±\frac{271}{10}}{2\left(-3\right)}
Tuhia te pūtakerua o te 27.1^{2}.
x=\frac{-27.1±\frac{271}{10}}{-6}
Whakareatia 2 ki te -3.
x=\frac{0}{-6}
Nā, me whakaoti te whārite x=\frac{-27.1±\frac{271}{10}}{-6} ina he tāpiri te ±. Tāpiri -27.1 ki te \frac{271}{10} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0
Whakawehe 0 ki te -6.
x=-\frac{\frac{271}{5}}{-6}
Nā, me whakaoti te whārite x=\frac{-27.1±\frac{271}{10}}{-6} ina he tango te ±. Tango \frac{271}{10} mai i -27.1 mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{271}{30}
Whakawehe -\frac{271}{5} ki te -6.
x=0 x=\frac{271}{30}
Kua oti te whārite te whakatau.
x=\frac{271}{30}
Tē taea kia ōrite te tāupe x ki 0.
x\times 15.1+x\times 12=3xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x\times 15.1+x\times 12=3x^{2}
Whakareatia te x ki te x, ka x^{2}.
27.1x=3x^{2}
Pahekotia te x\times 15.1 me x\times 12, ka 27.1x.
27.1x-3x^{2}=0
Tangohia te 3x^{2} mai i ngā taha e rua.
-3x^{2}+27.1x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-3x^{2}+27.1x}{-3}=\frac{0}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\frac{27.1}{-3}x=\frac{0}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}-\frac{271}{30}x=\frac{0}{-3}
Whakawehe 27.1 ki te -3.
x^{2}-\frac{271}{30}x=0
Whakawehe 0 ki te -3.
x^{2}-\frac{271}{30}x+\left(-\frac{271}{60}\right)^{2}=\left(-\frac{271}{60}\right)^{2}
Whakawehea te -\frac{271}{30}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{271}{60}. Nā, tāpiria te pūrua o te -\frac{271}{60} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{271}{30}x+\frac{73441}{3600}=\frac{73441}{3600}
Pūruatia -\frac{271}{60} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x-\frac{271}{60}\right)^{2}=\frac{73441}{3600}
Tauwehea x^{2}-\frac{271}{30}x+\frac{73441}{3600}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{271}{60}\right)^{2}}=\sqrt{\frac{73441}{3600}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{271}{60}=\frac{271}{60} x-\frac{271}{60}=-\frac{271}{60}
Whakarūnātia.
x=\frac{271}{30} x=0
Me tāpiri \frac{271}{60} ki ngā taha e rua o te whārite.
x=\frac{271}{30}
Tē taea kia ōrite te tāupe x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}