Aromātai
21+x-x^{2}
Whakaroha
21+x-x^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
15-\left(x^{2}-3x+2x-6\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x+2 ki ia tau o x-3.
15-\left(x^{2}-x-6\right)
Pahekotia te -3x me 2x, ka -x.
15-x^{2}-\left(-x\right)-\left(-6\right)
Hei kimi i te tauaro o x^{2}-x-6, kimihia te tauaro o ia taurangi.
15-x^{2}+x-\left(-6\right)
Ko te tauaro o -x ko x.
15-x^{2}+x+6
Ko te tauaro o -6 ko 6.
21-x^{2}+x
Tāpirihia te 15 ki te 6, ka 21.
15-\left(x^{2}-3x+2x-6\right)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x+2 ki ia tau o x-3.
15-\left(x^{2}-x-6\right)
Pahekotia te -3x me 2x, ka -x.
15-x^{2}-\left(-x\right)-\left(-6\right)
Hei kimi i te tauaro o x^{2}-x-6, kimihia te tauaro o ia taurangi.
15-x^{2}+x-\left(-6\right)
Ko te tauaro o -x ko x.
15-x^{2}+x+6
Ko te tauaro o -6 ko 6.
21-x^{2}+x
Tāpirihia te 15 ki te 6, ka 21.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}