Aromātai
3
Tauwehe
3
Tohaina
Kua tāruatia ki te papatopenga
15-\frac{15+1}{3}\times 2.25
Whakareatia te 5 ki te 3, ka 15.
15-\frac{16}{3}\times 2.25
Tāpirihia te 15 ki te 1, ka 16.
15-\frac{16}{3}\times \frac{9}{4}
Me tahuri ki tau ā-ira 2.25 ki te hautau \frac{225}{100}. Whakahekea te hautanga \frac{225}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
15-\frac{16\times 9}{3\times 4}
Me whakarea te \frac{16}{3} ki te \frac{9}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
15-\frac{144}{12}
Mahia ngā whakarea i roto i te hautanga \frac{16\times 9}{3\times 4}.
15-12
Whakawehea te 144 ki te 12, kia riro ko 12.
3
Tangohia te 12 i te 15, ka 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}