Whakaoti mō x (complex solution)
x=\sqrt{79}-8\approx 0.888194417
x=-\left(\sqrt{79}+8\right)\approx -16.888194417
Whakaoti mō x
x=\sqrt{79}-8\approx 0.888194417
x=-\sqrt{79}-8\approx -16.888194417
Graph
Tohaina
Kua tāruatia ki te papatopenga
15=x^{2}+16x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+16.
x^{2}+16x=15
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}+16x-15=0
Tangohia te 15 mai i ngā taha e rua.
x=\frac{-16±\sqrt{16^{2}-4\left(-15\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 16 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-15\right)}}{2}
Pūrua 16.
x=\frac{-16±\sqrt{256+60}}{2}
Whakareatia -4 ki te -15.
x=\frac{-16±\sqrt{316}}{2}
Tāpiri 256 ki te 60.
x=\frac{-16±2\sqrt{79}}{2}
Tuhia te pūtakerua o te 316.
x=\frac{2\sqrt{79}-16}{2}
Nā, me whakaoti te whārite x=\frac{-16±2\sqrt{79}}{2} ina he tāpiri te ±. Tāpiri -16 ki te 2\sqrt{79}.
x=\sqrt{79}-8
Whakawehe -16+2\sqrt{79} ki te 2.
x=\frac{-2\sqrt{79}-16}{2}
Nā, me whakaoti te whārite x=\frac{-16±2\sqrt{79}}{2} ina he tango te ±. Tango 2\sqrt{79} mai i -16.
x=-\sqrt{79}-8
Whakawehe -16-2\sqrt{79} ki te 2.
x=\sqrt{79}-8 x=-\sqrt{79}-8
Kua oti te whārite te whakatau.
15=x^{2}+16x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+16.
x^{2}+16x=15
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}+16x+8^{2}=15+8^{2}
Whakawehea te 16, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 8. Nā, tāpiria te pūrua o te 8 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+16x+64=15+64
Pūrua 8.
x^{2}+16x+64=79
Tāpiri 15 ki te 64.
\left(x+8\right)^{2}=79
Tauwehea x^{2}+16x+64. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+8\right)^{2}}=\sqrt{79}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+8=\sqrt{79} x+8=-\sqrt{79}
Whakarūnātia.
x=\sqrt{79}-8 x=-\sqrt{79}-8
Me tango 8 mai i ngā taha e rua o te whārite.
15=x^{2}+16x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+16.
x^{2}+16x=15
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}+16x-15=0
Tangohia te 15 mai i ngā taha e rua.
x=\frac{-16±\sqrt{16^{2}-4\left(-15\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 16 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-15\right)}}{2}
Pūrua 16.
x=\frac{-16±\sqrt{256+60}}{2}
Whakareatia -4 ki te -15.
x=\frac{-16±\sqrt{316}}{2}
Tāpiri 256 ki te 60.
x=\frac{-16±2\sqrt{79}}{2}
Tuhia te pūtakerua o te 316.
x=\frac{2\sqrt{79}-16}{2}
Nā, me whakaoti te whārite x=\frac{-16±2\sqrt{79}}{2} ina he tāpiri te ±. Tāpiri -16 ki te 2\sqrt{79}.
x=\sqrt{79}-8
Whakawehe -16+2\sqrt{79} ki te 2.
x=\frac{-2\sqrt{79}-16}{2}
Nā, me whakaoti te whārite x=\frac{-16±2\sqrt{79}}{2} ina he tango te ±. Tango 2\sqrt{79} mai i -16.
x=-\sqrt{79}-8
Whakawehe -16-2\sqrt{79} ki te 2.
x=\sqrt{79}-8 x=-\sqrt{79}-8
Kua oti te whārite te whakatau.
15=x^{2}+16x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+16.
x^{2}+16x=15
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}+16x+8^{2}=15+8^{2}
Whakawehea te 16, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 8. Nā, tāpiria te pūrua o te 8 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+16x+64=15+64
Pūrua 8.
x^{2}+16x+64=79
Tāpiri 15 ki te 64.
\left(x+8\right)^{2}=79
Tauwehea x^{2}+16x+64. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+8\right)^{2}}=\sqrt{79}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+8=\sqrt{79} x+8=-\sqrt{79}
Whakarūnātia.
x=\sqrt{79}-8 x=-\sqrt{79}-8
Me tango 8 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}