Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-14 ab=15\times 3=45
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 15x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-45 -3,-15 -5,-9
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 45.
-1-45=-46 -3-15=-18 -5-9=-14
Tātaihia te tapeke mō ia takirua.
a=-9 b=-5
Ko te otinga te takirua ka hoatu i te tapeke -14.
\left(15x^{2}-9x\right)+\left(-5x+3\right)
Tuhia anō te 15x^{2}-14x+3 hei \left(15x^{2}-9x\right)+\left(-5x+3\right).
3x\left(5x-3\right)-\left(5x-3\right)
Tauwehea te 3x i te tuatahi me te -1 i te rōpū tuarua.
\left(5x-3\right)\left(3x-1\right)
Whakatauwehea atu te kīanga pātahi 5x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
15x^{2}-14x+3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 15\times 3}}{2\times 15}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 15\times 3}}{2\times 15}
Pūrua -14.
x=\frac{-\left(-14\right)±\sqrt{196-60\times 3}}{2\times 15}
Whakareatia -4 ki te 15.
x=\frac{-\left(-14\right)±\sqrt{196-180}}{2\times 15}
Whakareatia -60 ki te 3.
x=\frac{-\left(-14\right)±\sqrt{16}}{2\times 15}
Tāpiri 196 ki te -180.
x=\frac{-\left(-14\right)±4}{2\times 15}
Tuhia te pūtakerua o te 16.
x=\frac{14±4}{2\times 15}
Ko te tauaro o -14 ko 14.
x=\frac{14±4}{30}
Whakareatia 2 ki te 15.
x=\frac{18}{30}
Nā, me whakaoti te whārite x=\frac{14±4}{30} ina he tāpiri te ±. Tāpiri 14 ki te 4.
x=\frac{3}{5}
Whakahekea te hautanga \frac{18}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{10}{30}
Nā, me whakaoti te whārite x=\frac{14±4}{30} ina he tango te ±. Tango 4 mai i 14.
x=\frac{1}{3}
Whakahekea te hautanga \frac{10}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
15x^{2}-14x+3=15\left(x-\frac{3}{5}\right)\left(x-\frac{1}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{5} mō te x_{1} me te \frac{1}{3} mō te x_{2}.
15x^{2}-14x+3=15\times \frac{5x-3}{5}\left(x-\frac{1}{3}\right)
Tango \frac{3}{5} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
15x^{2}-14x+3=15\times \frac{5x-3}{5}\times \frac{3x-1}{3}
Tango \frac{1}{3} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
15x^{2}-14x+3=15\times \frac{\left(5x-3\right)\left(3x-1\right)}{5\times 3}
Whakareatia \frac{5x-3}{5} ki te \frac{3x-1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
15x^{2}-14x+3=15\times \frac{\left(5x-3\right)\left(3x-1\right)}{15}
Whakareatia 5 ki te 3.
15x^{2}-14x+3=\left(5x-3\right)\left(3x-1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 15 i roto i te 15 me te 15.