Tauwehe
5\left(x+1\right)\left(3x+2\right)
Aromātai
5\left(x+1\right)\left(3x+2\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
5\left(3x^{2}+5x+2\right)
Tauwehea te 5.
a+b=5 ab=3\times 2=6
Whakaarohia te 3x^{2}+5x+2. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3x^{2}+ax+bx+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,6 2,3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
1+6=7 2+3=5
Tātaihia te tapeke mō ia takirua.
a=2 b=3
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(3x^{2}+2x\right)+\left(3x+2\right)
Tuhia anō te 3x^{2}+5x+2 hei \left(3x^{2}+2x\right)+\left(3x+2\right).
x\left(3x+2\right)+3x+2
Whakatauwehea atu x i te 3x^{2}+2x.
\left(3x+2\right)\left(x+1\right)
Whakatauwehea atu te kīanga pātahi 3x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
5\left(3x+2\right)\left(x+1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
15x^{2}+25x+10=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-25±\sqrt{25^{2}-4\times 15\times 10}}{2\times 15}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-25±\sqrt{625-4\times 15\times 10}}{2\times 15}
Pūrua 25.
x=\frac{-25±\sqrt{625-60\times 10}}{2\times 15}
Whakareatia -4 ki te 15.
x=\frac{-25±\sqrt{625-600}}{2\times 15}
Whakareatia -60 ki te 10.
x=\frac{-25±\sqrt{25}}{2\times 15}
Tāpiri 625 ki te -600.
x=\frac{-25±5}{2\times 15}
Tuhia te pūtakerua o te 25.
x=\frac{-25±5}{30}
Whakareatia 2 ki te 15.
x=-\frac{20}{30}
Nā, me whakaoti te whārite x=\frac{-25±5}{30} ina he tāpiri te ±. Tāpiri -25 ki te 5.
x=-\frac{2}{3}
Whakahekea te hautanga \frac{-20}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=-\frac{30}{30}
Nā, me whakaoti te whārite x=\frac{-25±5}{30} ina he tango te ±. Tango 5 mai i -25.
x=-1
Whakawehe -30 ki te 30.
15x^{2}+25x+10=15\left(x-\left(-\frac{2}{3}\right)\right)\left(x-\left(-1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{2}{3} mō te x_{1} me te -1 mō te x_{2}.
15x^{2}+25x+10=15\left(x+\frac{2}{3}\right)\left(x+1\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
15x^{2}+25x+10=15\times \frac{3x+2}{3}\left(x+1\right)
Tāpiri \frac{2}{3} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
15x^{2}+25x+10=5\left(3x+2\right)\left(x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 15 me te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}