Tauwehe
\left(5x-3\right)\left(3x+5\right)
Aromātai
\left(5x-3\right)\left(3x+5\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=16 ab=15\left(-15\right)=-225
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 15x^{2}+ax+bx-15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,225 -3,75 -5,45 -9,25 -15,15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -225.
-1+225=224 -3+75=72 -5+45=40 -9+25=16 -15+15=0
Tātaihia te tapeke mō ia takirua.
a=-9 b=25
Ko te otinga te takirua ka hoatu i te tapeke 16.
\left(15x^{2}-9x\right)+\left(25x-15\right)
Tuhia anō te 15x^{2}+16x-15 hei \left(15x^{2}-9x\right)+\left(25x-15\right).
3x\left(5x-3\right)+5\left(5x-3\right)
Tauwehea te 3x i te tuatahi me te 5 i te rōpū tuarua.
\left(5x-3\right)\left(3x+5\right)
Whakatauwehea atu te kīanga pātahi 5x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
15x^{2}+16x-15=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-16±\sqrt{16^{2}-4\times 15\left(-15\right)}}{2\times 15}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-16±\sqrt{256-4\times 15\left(-15\right)}}{2\times 15}
Pūrua 16.
x=\frac{-16±\sqrt{256-60\left(-15\right)}}{2\times 15}
Whakareatia -4 ki te 15.
x=\frac{-16±\sqrt{256+900}}{2\times 15}
Whakareatia -60 ki te -15.
x=\frac{-16±\sqrt{1156}}{2\times 15}
Tāpiri 256 ki te 900.
x=\frac{-16±34}{2\times 15}
Tuhia te pūtakerua o te 1156.
x=\frac{-16±34}{30}
Whakareatia 2 ki te 15.
x=\frac{18}{30}
Nā, me whakaoti te whārite x=\frac{-16±34}{30} ina he tāpiri te ±. Tāpiri -16 ki te 34.
x=\frac{3}{5}
Whakahekea te hautanga \frac{18}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{50}{30}
Nā, me whakaoti te whārite x=\frac{-16±34}{30} ina he tango te ±. Tango 34 mai i -16.
x=-\frac{5}{3}
Whakahekea te hautanga \frac{-50}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
15x^{2}+16x-15=15\left(x-\frac{3}{5}\right)\left(x-\left(-\frac{5}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{5} mō te x_{1} me te -\frac{5}{3} mō te x_{2}.
15x^{2}+16x-15=15\left(x-\frac{3}{5}\right)\left(x+\frac{5}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
15x^{2}+16x-15=15\times \frac{5x-3}{5}\left(x+\frac{5}{3}\right)
Tango \frac{3}{5} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
15x^{2}+16x-15=15\times \frac{5x-3}{5}\times \frac{3x+5}{3}
Tāpiri \frac{5}{3} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
15x^{2}+16x-15=15\times \frac{\left(5x-3\right)\left(3x+5\right)}{5\times 3}
Whakareatia \frac{5x-3}{5} ki te \frac{3x+5}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
15x^{2}+16x-15=15\times \frac{\left(5x-3\right)\left(3x+5\right)}{15}
Whakareatia 5 ki te 3.
15x^{2}+16x-15=\left(5x-3\right)\left(3x+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 15 i roto i te 15 me te 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}