Whakaoti mō x
x=-\frac{2}{5}=-0.4
x=-\frac{1}{3}\approx -0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=11 ab=15\times 2=30
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 15x^{2}+ax+bx+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,30 2,15 3,10 5,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 30.
1+30=31 2+15=17 3+10=13 5+6=11
Tātaihia te tapeke mō ia takirua.
a=5 b=6
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(15x^{2}+5x\right)+\left(6x+2\right)
Tuhia anō te 15x^{2}+11x+2 hei \left(15x^{2}+5x\right)+\left(6x+2\right).
5x\left(3x+1\right)+2\left(3x+1\right)
Tauwehea te 5x i te tuatahi me te 2 i te rōpū tuarua.
\left(3x+1\right)\left(5x+2\right)
Whakatauwehea atu te kīanga pātahi 3x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{1}{3} x=-\frac{2}{5}
Hei kimi otinga whārite, me whakaoti te 3x+1=0 me te 5x+2=0.
15x^{2}+11x+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-11±\sqrt{11^{2}-4\times 15\times 2}}{2\times 15}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 15 mō a, 11 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 15\times 2}}{2\times 15}
Pūrua 11.
x=\frac{-11±\sqrt{121-60\times 2}}{2\times 15}
Whakareatia -4 ki te 15.
x=\frac{-11±\sqrt{121-120}}{2\times 15}
Whakareatia -60 ki te 2.
x=\frac{-11±\sqrt{1}}{2\times 15}
Tāpiri 121 ki te -120.
x=\frac{-11±1}{2\times 15}
Tuhia te pūtakerua o te 1.
x=\frac{-11±1}{30}
Whakareatia 2 ki te 15.
x=-\frac{10}{30}
Nā, me whakaoti te whārite x=\frac{-11±1}{30} ina he tāpiri te ±. Tāpiri -11 ki te 1.
x=-\frac{1}{3}
Whakahekea te hautanga \frac{-10}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
x=-\frac{12}{30}
Nā, me whakaoti te whārite x=\frac{-11±1}{30} ina he tango te ±. Tango 1 mai i -11.
x=-\frac{2}{5}
Whakahekea te hautanga \frac{-12}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{1}{3} x=-\frac{2}{5}
Kua oti te whārite te whakatau.
15x^{2}+11x+2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
15x^{2}+11x+2-2=-2
Me tango 2 mai i ngā taha e rua o te whārite.
15x^{2}+11x=-2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
\frac{15x^{2}+11x}{15}=-\frac{2}{15}
Whakawehea ngā taha e rua ki te 15.
x^{2}+\frac{11}{15}x=-\frac{2}{15}
Mā te whakawehe ki te 15 ka wetekia te whakareanga ki te 15.
x^{2}+\frac{11}{15}x+\left(\frac{11}{30}\right)^{2}=-\frac{2}{15}+\left(\frac{11}{30}\right)^{2}
Whakawehea te \frac{11}{15}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{11}{30}. Nā, tāpiria te pūrua o te \frac{11}{30} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{11}{15}x+\frac{121}{900}=-\frac{2}{15}+\frac{121}{900}
Pūruatia \frac{11}{30} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{11}{15}x+\frac{121}{900}=\frac{1}{900}
Tāpiri -\frac{2}{15} ki te \frac{121}{900} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{11}{30}\right)^{2}=\frac{1}{900}
Tauwehea x^{2}+\frac{11}{15}x+\frac{121}{900}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{30}\right)^{2}}=\sqrt{\frac{1}{900}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{11}{30}=\frac{1}{30} x+\frac{11}{30}=-\frac{1}{30}
Whakarūnātia.
x=-\frac{1}{3} x=-\frac{2}{5}
Me tango \frac{11}{30} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}