Tauwehe
\left(5p-1\right)\left(3p+2\right)
Aromātai
\left(5p-1\right)\left(3p+2\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=7 ab=15\left(-2\right)=-30
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 15p^{2}+ap+bp-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,30 -2,15 -3,10 -5,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Tātaihia te tapeke mō ia takirua.
a=-3 b=10
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(15p^{2}-3p\right)+\left(10p-2\right)
Tuhia anō te 15p^{2}+7p-2 hei \left(15p^{2}-3p\right)+\left(10p-2\right).
3p\left(5p-1\right)+2\left(5p-1\right)
Tauwehea te 3p i te tuatahi me te 2 i te rōpū tuarua.
\left(5p-1\right)\left(3p+2\right)
Whakatauwehea atu te kīanga pātahi 5p-1 mā te whakamahi i te āhuatanga tātai tohatoha.
15p^{2}+7p-2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
p=\frac{-7±\sqrt{7^{2}-4\times 15\left(-2\right)}}{2\times 15}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
p=\frac{-7±\sqrt{49-4\times 15\left(-2\right)}}{2\times 15}
Pūrua 7.
p=\frac{-7±\sqrt{49-60\left(-2\right)}}{2\times 15}
Whakareatia -4 ki te 15.
p=\frac{-7±\sqrt{49+120}}{2\times 15}
Whakareatia -60 ki te -2.
p=\frac{-7±\sqrt{169}}{2\times 15}
Tāpiri 49 ki te 120.
p=\frac{-7±13}{2\times 15}
Tuhia te pūtakerua o te 169.
p=\frac{-7±13}{30}
Whakareatia 2 ki te 15.
p=\frac{6}{30}
Nā, me whakaoti te whārite p=\frac{-7±13}{30} ina he tāpiri te ±. Tāpiri -7 ki te 13.
p=\frac{1}{5}
Whakahekea te hautanga \frac{6}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
p=-\frac{20}{30}
Nā, me whakaoti te whārite p=\frac{-7±13}{30} ina he tango te ±. Tango 13 mai i -7.
p=-\frac{2}{3}
Whakahekea te hautanga \frac{-20}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
15p^{2}+7p-2=15\left(p-\frac{1}{5}\right)\left(p-\left(-\frac{2}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{5} mō te x_{1} me te -\frac{2}{3} mō te x_{2}.
15p^{2}+7p-2=15\left(p-\frac{1}{5}\right)\left(p+\frac{2}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
15p^{2}+7p-2=15\times \frac{5p-1}{5}\left(p+\frac{2}{3}\right)
Tango \frac{1}{5} mai i p mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
15p^{2}+7p-2=15\times \frac{5p-1}{5}\times \frac{3p+2}{3}
Tāpiri \frac{2}{3} ki te p mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
15p^{2}+7p-2=15\times \frac{\left(5p-1\right)\left(3p+2\right)}{5\times 3}
Whakareatia \frac{5p-1}{5} ki te \frac{3p+2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
15p^{2}+7p-2=15\times \frac{\left(5p-1\right)\left(3p+2\right)}{15}
Whakareatia 5 ki te 3.
15p^{2}+7p-2=\left(5p-1\right)\left(3p+2\right)
Whakakorea atu te tauwehe pūnoa nui rawa 15 i roto i te 15 me te 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}